在 Ni3Al(111)上寻找硼吩:硼偏析和氧化的实验表征

Yan Yan Grisan Qiu, P. Biasin, Paola Mantegazza, Stefania Baronio, Martin Heinrich, M. Muntwiler, E. Vesselli
{"title":"在 Ni3Al(111)上寻找硼吩:硼偏析和氧化的实验表征","authors":"Yan Yan Grisan Qiu, P. Biasin, Paola Mantegazza, Stefania Baronio, Martin Heinrich, M. Muntwiler, E. Vesselli","doi":"10.1088/2515-7639/ad278c","DOIUrl":null,"url":null,"abstract":"\n Synthesis of a stable, well ordered honeycomb borophene phase has been achieved to date by exploiting Al(111) as a growth substrate, which provides the necessary charge doping to compensate the high hexagonal-holes density. However, B/Al(111) is governed by a strong B-Al interaction so to yield the actual formation of an AlB2 honeycomb borophene phase. Dilution of aluminum by alloying could then in principle weaken the boron-support bonding. By means of a combined spectroscopy and microscopy experimental approach, we find instead that the growth of boron layers on the Ni3Al(111) alloy termination is driven by B dissolution into the bulk and surface segregation mechanisms. While no long-range ordered boron-induced phase is observed, locally ordered superstructural units with triangular appearance are stabilized by substrate pinning, following the chemical p(2  2) surface order. Oxidation involves both boron and aluminum, inducing surface segregation of B, while nickel remains in its metallic form.","PeriodicalId":501825,"journal":{"name":"Journal of Physics: Materials","volume":"24 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seeking borophene on Ni3Al(111): an experimental characterization of boron segregation and oxidation\",\"authors\":\"Yan Yan Grisan Qiu, P. Biasin, Paola Mantegazza, Stefania Baronio, Martin Heinrich, M. Muntwiler, E. Vesselli\",\"doi\":\"10.1088/2515-7639/ad278c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Synthesis of a stable, well ordered honeycomb borophene phase has been achieved to date by exploiting Al(111) as a growth substrate, which provides the necessary charge doping to compensate the high hexagonal-holes density. However, B/Al(111) is governed by a strong B-Al interaction so to yield the actual formation of an AlB2 honeycomb borophene phase. Dilution of aluminum by alloying could then in principle weaken the boron-support bonding. By means of a combined spectroscopy and microscopy experimental approach, we find instead that the growth of boron layers on the Ni3Al(111) alloy termination is driven by B dissolution into the bulk and surface segregation mechanisms. While no long-range ordered boron-induced phase is observed, locally ordered superstructural units with triangular appearance are stabilized by substrate pinning, following the chemical p(2  2) surface order. Oxidation involves both boron and aluminum, inducing surface segregation of B, while nickel remains in its metallic form.\",\"PeriodicalId\":501825,\"journal\":{\"name\":\"Journal of Physics: Materials\",\"volume\":\"24 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics: Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2515-7639/ad278c\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2515-7639/ad278c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

迄今为止,利用铝(111)作为生长基底,已经合成了稳定、有序的蜂窝状硼吩相,铝(111)提供了必要的电荷掺杂以补偿高六方孔密度。然而,B/Al(111)受强烈的 B-Al 相互作用的支配,因此实际形成的是 AlB2 蜂窝硼吩相。通过合金化稀释铝,原则上可以削弱硼支撑键。通过光谱和显微镜相结合的实验方法,我们发现硼层在 Ni3Al(111)合金终止层上的生长是由硼溶解到块体和表面偏析机制所驱动的。虽然没有观察到长程有序的硼诱导相,但具有三角形外观的局部有序超结构单元通过基底针销稳定,遵循化学 p(2  2) 表面有序。氧化涉及硼和铝,导致硼的表面偏析,而镍则保持其金属形态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Seeking borophene on Ni3Al(111): an experimental characterization of boron segregation and oxidation
Synthesis of a stable, well ordered honeycomb borophene phase has been achieved to date by exploiting Al(111) as a growth substrate, which provides the necessary charge doping to compensate the high hexagonal-holes density. However, B/Al(111) is governed by a strong B-Al interaction so to yield the actual formation of an AlB2 honeycomb borophene phase. Dilution of aluminum by alloying could then in principle weaken the boron-support bonding. By means of a combined spectroscopy and microscopy experimental approach, we find instead that the growth of boron layers on the Ni3Al(111) alloy termination is driven by B dissolution into the bulk and surface segregation mechanisms. While no long-range ordered boron-induced phase is observed, locally ordered superstructural units with triangular appearance are stabilized by substrate pinning, following the chemical p(2  2) surface order. Oxidation involves both boron and aluminum, inducing surface segregation of B, while nickel remains in its metallic form.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信