{"title":"基于心电图的卷积神经网络预测经导管主动脉瓣置换术后的传导障碍","authors":"Yuheng Jia, Yiming Li, Gaden Luosang, Jianyong Wang, Gang Peng, Xingzhou Pu, Weili Jiang, Wenjian Li, Zhengang Zhao, Yong Peng, Yuan Feng, Jiafu Wei, Yuanning Xu, Xingbin Liu, Zhang Yi, Mao Chen","doi":"10.1093/ehjdh/ztae007","DOIUrl":null,"url":null,"abstract":"\n \n \n Permanent pacemaker implantation and left bundle branch block are common complications after transcatheter aortic valve replacement (TAVR) and are associated with impaired prognosis.\n \n \n \n This study aimed to develop an artificial intelligence (AI) model for predicting conduction disturbances after TAVR using preprocedural 12-lead electrocardiogram (ECG) data.\n \n \n \n We collected preprocedural 12-lead ECGs of patients who underwent TAVR at West China Hospital between March 2016 and March 2022. A hold-out testing set comprising 20% of the sample was randomly selected. We developed an AI model using a convolutional neural network, trained it using fivefold cross validation, and tested it on the hold-out testing cohort. We also developed and validated an enhanced model that included additional clinical features.\n \n \n \n After applying exclusion criteria, we included 1354 ECGs of 718 patients in the study. The AI model predicted conduction disturbances in the hold-out testing cohort with an AUC of 0.764, accuracy of 0.743, F1 score of 0.752, sensitivity of 0.876, and specificity of 0.624, based solely on pre-procedural ECG data. The performance was better than the Emory score (AUC = 0.704), as well as the Logistic (AUC = 0.574) and XGboost (AUC = 0.520) models built with previously identified high-risk ECG patterns. After adding clinical features, there was an increase in the overall performance with an AUC of 0.779, accuracy of 0.774, F1 score of 0.776, sensitivity of 0.794, and specificity of 0.752.\n \n \n \n AI-enhanced ECGs may offer better predictive value than traditionally defined high-risk ECG patterns.\n","PeriodicalId":508387,"journal":{"name":"European Heart Journal - Digital Health","volume":"82 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ECG-based Prediction of Conduction Disturbances after Transcatheter Aortic Valve Replacement with Convolutional Neural Network\",\"authors\":\"Yuheng Jia, Yiming Li, Gaden Luosang, Jianyong Wang, Gang Peng, Xingzhou Pu, Weili Jiang, Wenjian Li, Zhengang Zhao, Yong Peng, Yuan Feng, Jiafu Wei, Yuanning Xu, Xingbin Liu, Zhang Yi, Mao Chen\",\"doi\":\"10.1093/ehjdh/ztae007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n \\n Permanent pacemaker implantation and left bundle branch block are common complications after transcatheter aortic valve replacement (TAVR) and are associated with impaired prognosis.\\n \\n \\n \\n This study aimed to develop an artificial intelligence (AI) model for predicting conduction disturbances after TAVR using preprocedural 12-lead electrocardiogram (ECG) data.\\n \\n \\n \\n We collected preprocedural 12-lead ECGs of patients who underwent TAVR at West China Hospital between March 2016 and March 2022. A hold-out testing set comprising 20% of the sample was randomly selected. We developed an AI model using a convolutional neural network, trained it using fivefold cross validation, and tested it on the hold-out testing cohort. We also developed and validated an enhanced model that included additional clinical features.\\n \\n \\n \\n After applying exclusion criteria, we included 1354 ECGs of 718 patients in the study. The AI model predicted conduction disturbances in the hold-out testing cohort with an AUC of 0.764, accuracy of 0.743, F1 score of 0.752, sensitivity of 0.876, and specificity of 0.624, based solely on pre-procedural ECG data. The performance was better than the Emory score (AUC = 0.704), as well as the Logistic (AUC = 0.574) and XGboost (AUC = 0.520) models built with previously identified high-risk ECG patterns. After adding clinical features, there was an increase in the overall performance with an AUC of 0.779, accuracy of 0.774, F1 score of 0.776, sensitivity of 0.794, and specificity of 0.752.\\n \\n \\n \\n AI-enhanced ECGs may offer better predictive value than traditionally defined high-risk ECG patterns.\\n\",\"PeriodicalId\":508387,\"journal\":{\"name\":\"European Heart Journal - Digital Health\",\"volume\":\"82 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Heart Journal - Digital Health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/ehjdh/ztae007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Heart Journal - Digital Health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ehjdh/ztae007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ECG-based Prediction of Conduction Disturbances after Transcatheter Aortic Valve Replacement with Convolutional Neural Network
Permanent pacemaker implantation and left bundle branch block are common complications after transcatheter aortic valve replacement (TAVR) and are associated with impaired prognosis.
This study aimed to develop an artificial intelligence (AI) model for predicting conduction disturbances after TAVR using preprocedural 12-lead electrocardiogram (ECG) data.
We collected preprocedural 12-lead ECGs of patients who underwent TAVR at West China Hospital between March 2016 and March 2022. A hold-out testing set comprising 20% of the sample was randomly selected. We developed an AI model using a convolutional neural network, trained it using fivefold cross validation, and tested it on the hold-out testing cohort. We also developed and validated an enhanced model that included additional clinical features.
After applying exclusion criteria, we included 1354 ECGs of 718 patients in the study. The AI model predicted conduction disturbances in the hold-out testing cohort with an AUC of 0.764, accuracy of 0.743, F1 score of 0.752, sensitivity of 0.876, and specificity of 0.624, based solely on pre-procedural ECG data. The performance was better than the Emory score (AUC = 0.704), as well as the Logistic (AUC = 0.574) and XGboost (AUC = 0.520) models built with previously identified high-risk ECG patterns. After adding clinical features, there was an increase in the overall performance with an AUC of 0.779, accuracy of 0.774, F1 score of 0.776, sensitivity of 0.794, and specificity of 0.752.
AI-enhanced ECGs may offer better predictive value than traditionally defined high-risk ECG patterns.