{"title":"关于变形理论和形式化猜想的几点评论","authors":"Huachen Chen, Laura Pertusi, Xiaolei Zhao","doi":"10.1007/s11565-024-00500-0","DOIUrl":null,"url":null,"abstract":"<div><p>Using the algebraic criterion proved by Bandiera, Manetti and Meazzini, we show the formality conjecture for universally gluable objects with linearly reductive automorphism groups in the bounded derived category of a K3 surface. As an application, we prove the formality conjecture for polystable objects in the Kuznetsov components of Gushel–Mukai threefolds and quartic double solids.</p></div>","PeriodicalId":35009,"journal":{"name":"Annali dell''Universita di Ferrara","volume":"70 3","pages":"761 - 779"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11565-024-00500-0.pdf","citationCount":"0","resultStr":"{\"title\":\"Some remarks about deformation theory and formality conjecture\",\"authors\":\"Huachen Chen, Laura Pertusi, Xiaolei Zhao\",\"doi\":\"10.1007/s11565-024-00500-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Using the algebraic criterion proved by Bandiera, Manetti and Meazzini, we show the formality conjecture for universally gluable objects with linearly reductive automorphism groups in the bounded derived category of a K3 surface. As an application, we prove the formality conjecture for polystable objects in the Kuznetsov components of Gushel–Mukai threefolds and quartic double solids.</p></div>\",\"PeriodicalId\":35009,\"journal\":{\"name\":\"Annali dell''Universita di Ferrara\",\"volume\":\"70 3\",\"pages\":\"761 - 779\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11565-024-00500-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali dell''Universita di Ferrara\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11565-024-00500-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali dell''Universita di Ferrara","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s11565-024-00500-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
Some remarks about deformation theory and formality conjecture
Using the algebraic criterion proved by Bandiera, Manetti and Meazzini, we show the formality conjecture for universally gluable objects with linearly reductive automorphism groups in the bounded derived category of a K3 surface. As an application, we prove the formality conjecture for polystable objects in the Kuznetsov components of Gushel–Mukai threefolds and quartic double solids.
期刊介绍:
Annali dell''Università di Ferrara is a general mathematical journal publishing high quality papers in all aspects of pure and applied mathematics. After a quick preliminary examination, potentially acceptable contributions will be judged by appropriate international referees. Original research papers are preferred, but well-written surveys on important subjects are also welcome.