带有 $$H^{+}$ H + 映射的 2-巴拿赫空间中的不变逼近

Pub Date : 2024-02-09 DOI:10.1007/s13370-024-01169-6
M. Pitchaimani, K. Saravanan
{"title":"带有 $$H^{+}$ H + 映射的 2-巴拿赫空间中的不变逼近","authors":"M. Pitchaimani,&nbsp;K. Saravanan","doi":"10.1007/s13370-024-01169-6","DOIUrl":null,"url":null,"abstract":"<div><p>In order to study the invariant approximation in 2-Banach spaces, we define the concept of <span>\\( H^{+} \\)</span> type nonexpansive mapping to investigate the existence and uniqueness of approximation. Using <span>\\( H^{+} \\)</span> type non expansive multi-valued mapping in 2-Banach spaces to obtain a generalization of the classical Nadler’s fixed point theorem, also discuss the invariant approximation and prove several new results by replacing multi-valued mapping with <span>\\( H^{+} \\)</span> mapping in 2-Banach space.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Invariant approximation in 2-banach space with \\\\(H^{+}\\\\) mappings\",\"authors\":\"M. Pitchaimani,&nbsp;K. Saravanan\",\"doi\":\"10.1007/s13370-024-01169-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In order to study the invariant approximation in 2-Banach spaces, we define the concept of <span>\\\\( H^{+} \\\\)</span> type nonexpansive mapping to investigate the existence and uniqueness of approximation. Using <span>\\\\( H^{+} \\\\)</span> type non expansive multi-valued mapping in 2-Banach spaces to obtain a generalization of the classical Nadler’s fixed point theorem, also discuss the invariant approximation and prove several new results by replacing multi-valued mapping with <span>\\\\( H^{+} \\\\)</span> mapping in 2-Banach space.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13370-024-01169-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13370-024-01169-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了研究 2-Banach 空间中的不变逼近,我们定义了 \( H^{+} \) 型非扩张映射的概念来研究逼近的存在性和唯一性。利用 2-Banach 空间中的\( H^{+} \)型非扩张多值映射得到了经典的纳德勒定点定理的广义,还讨论了不变逼近,并通过用 2-Banach 空间中的\( H^{+} \)映射替换多值映射证明了几个新结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Invariant approximation in 2-banach space with \(H^{+}\) mappings

In order to study the invariant approximation in 2-Banach spaces, we define the concept of \( H^{+} \) type nonexpansive mapping to investigate the existence and uniqueness of approximation. Using \( H^{+} \) type non expansive multi-valued mapping in 2-Banach spaces to obtain a generalization of the classical Nadler’s fixed point theorem, also discuss the invariant approximation and prove several new results by replacing multi-valued mapping with \( H^{+} \) mapping in 2-Banach space.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信