零碎克制支配

P. Vijayalakshmi, K. Karuppasamy, Tiji Thomas
{"title":"零碎克制支配","authors":"P. Vijayalakshmi, K. Karuppasamy, Tiji Thomas","doi":"10.1142/s1793830924500046","DOIUrl":null,"url":null,"abstract":"Let G be a graph with a set of V vertices and a set of E edges. A function [Formula: see text] is called a restrained dominating function (RDF) of G if, for every [Formula: see text] [Formula: see text]. A restrained dominating function f of a graph G is called minimal (MRDF) if, for all functions [Formula: see text] such that [Formula: see text] and g(v) [Formula: see text] f(v) for at least one [Formula: see text] g is not a RDF. The fractional restrained domination number [Formula: see text] is defined as follows: [Formula: see text]: f is an MRDF of G[Formula: see text] where [Formula: see text].","PeriodicalId":504044,"journal":{"name":"Discrete Mathematics, Algorithms and Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fractional restrained domination\",\"authors\":\"P. Vijayalakshmi, K. Karuppasamy, Tiji Thomas\",\"doi\":\"10.1142/s1793830924500046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let G be a graph with a set of V vertices and a set of E edges. A function [Formula: see text] is called a restrained dominating function (RDF) of G if, for every [Formula: see text] [Formula: see text]. A restrained dominating function f of a graph G is called minimal (MRDF) if, for all functions [Formula: see text] such that [Formula: see text] and g(v) [Formula: see text] f(v) for at least one [Formula: see text] g is not a RDF. The fractional restrained domination number [Formula: see text] is defined as follows: [Formula: see text]: f is an MRDF of G[Formula: see text] where [Formula: see text].\",\"PeriodicalId\":504044,\"journal\":{\"name\":\"Discrete Mathematics, Algorithms and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics, Algorithms and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793830924500046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics, Algorithms and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1793830924500046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设 G 是一个有 V 个顶点和 E 条边的图。如果对于每个函数 [公式:见正文] [公式:见正文],G 的一个函数 [公式:见正文] 称为限制支配函数 (RDF)。如果对于所有函数 [公式:见正文],且 g(v) [公式:见正文] f(v) 至少有一个 [公式:见正文] g 不是 RDF,则图 G 的限制支配函数 f 称为最小值(MRDF)。小数约束支配数[式:见正文]定义如下:[公式:见正文]:f 是 G 的 MRDF[公式:见正文],其中[公式:见正文]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fractional restrained domination
Let G be a graph with a set of V vertices and a set of E edges. A function [Formula: see text] is called a restrained dominating function (RDF) of G if, for every [Formula: see text] [Formula: see text]. A restrained dominating function f of a graph G is called minimal (MRDF) if, for all functions [Formula: see text] such that [Formula: see text] and g(v) [Formula: see text] f(v) for at least one [Formula: see text] g is not a RDF. The fractional restrained domination number [Formula: see text] is defined as follows: [Formula: see text]: f is an MRDF of G[Formula: see text] where [Formula: see text].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信