Mohammad Ali Golshokouh, Nima Refahati, P. R. Saffari
{"title":"硅纳米颗粒对聚甲基丙烯酸甲酯基纳米复合材料吸湿性和断裂韧性的影响","authors":"Mohammad Ali Golshokouh, Nima Refahati, P. R. Saffari","doi":"10.3390/jcs8020069","DOIUrl":null,"url":null,"abstract":"The effect of silicon nanoparticles with different percentages (2, 5, 7, and 10 wt.%) on moisture absorption in environments with different pHs (5, 6, 7, 8, 9) as well as fracture toughness of polymethyl methacrylate is discussed. The samples were prepared using pressure molding. Fracture strength was tested via the three-point bending method according to the ASTM D5045 standard and moisture absorption rate according to the absorption test according to the ASTM D570 standard. SEM images show that up to 7%, the dispersion of silica nanoparticles is acceptable, but the homogeneity is not acceptable at 10%. The results indicate that the increase in silica nanoparticles has improved the fracture toughness of the manufactured parts. The highest fracture toughness improvement is about 57% in the optimal state at 5%. Also, increasing silica nanoparticles increased the moisture absorption in the produced samples. In addition, as the acidic or base of the liquid moves to neutral, the reaction between the base polymer molecules and the test liquid decreases and, so, the moisture absorption also increases.","PeriodicalId":502935,"journal":{"name":"Journal of Composites Science","volume":"363 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Silicon Nanoparticles on Moisture Absorption and Fracture Toughness of Polymethyl Methacrylate Matrix Nanocomposites\",\"authors\":\"Mohammad Ali Golshokouh, Nima Refahati, P. R. Saffari\",\"doi\":\"10.3390/jcs8020069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The effect of silicon nanoparticles with different percentages (2, 5, 7, and 10 wt.%) on moisture absorption in environments with different pHs (5, 6, 7, 8, 9) as well as fracture toughness of polymethyl methacrylate is discussed. The samples were prepared using pressure molding. Fracture strength was tested via the three-point bending method according to the ASTM D5045 standard and moisture absorption rate according to the absorption test according to the ASTM D570 standard. SEM images show that up to 7%, the dispersion of silica nanoparticles is acceptable, but the homogeneity is not acceptable at 10%. The results indicate that the increase in silica nanoparticles has improved the fracture toughness of the manufactured parts. The highest fracture toughness improvement is about 57% in the optimal state at 5%. Also, increasing silica nanoparticles increased the moisture absorption in the produced samples. In addition, as the acidic or base of the liquid moves to neutral, the reaction between the base polymer molecules and the test liquid decreases and, so, the moisture absorption also increases.\",\"PeriodicalId\":502935,\"journal\":{\"name\":\"Journal of Composites Science\",\"volume\":\"363 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Composites Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jcs8020069\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Composites Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jcs8020069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of Silicon Nanoparticles on Moisture Absorption and Fracture Toughness of Polymethyl Methacrylate Matrix Nanocomposites
The effect of silicon nanoparticles with different percentages (2, 5, 7, and 10 wt.%) on moisture absorption in environments with different pHs (5, 6, 7, 8, 9) as well as fracture toughness of polymethyl methacrylate is discussed. The samples were prepared using pressure molding. Fracture strength was tested via the three-point bending method according to the ASTM D5045 standard and moisture absorption rate according to the absorption test according to the ASTM D570 standard. SEM images show that up to 7%, the dispersion of silica nanoparticles is acceptable, but the homogeneity is not acceptable at 10%. The results indicate that the increase in silica nanoparticles has improved the fracture toughness of the manufactured parts. The highest fracture toughness improvement is about 57% in the optimal state at 5%. Also, increasing silica nanoparticles increased the moisture absorption in the produced samples. In addition, as the acidic or base of the liquid moves to neutral, the reaction between the base polymer molecules and the test liquid decreases and, so, the moisture absorption also increases.