{"title":"管道智能堵漏机器人制动和控制系统的稳定性分析","authors":"Zhengguo Jiang, Chong Xie, Minghai Zhou, Xiang Liu, Guangyao Li, Guorong Wang, Yang Tang","doi":"10.1177/09544089241230286","DOIUrl":null,"url":null,"abstract":"In the maintenance and emergency repair of oil and gas long-distance pipelines, the pipeline intelligent plugging robot is a new type of intelligent and efficient plugging device inside the pipeline. The stability of its braking and control system determines whether it can successfully seal high-pressure oil and gas inside the pipeline. This research is about intelligent plugging robots for pipelines that use the friction between the rubber hose and the pipe wall for braking. A hydraulic control system is designed, and a braking model for the robot is established. The hydraulic control system is simulated using a numerical simulation method, and the influence of different braking distances on system stability is investigated for various initial velocities of the robot. The results indicate that the fuzzy PID control hydraulic system exhibits a faster response with a maximum overshoot acceleration of −12.8 m/s2. The system achieves the desired acceleration of −0.14 m/s2 within 7 seconds and successfully completes the braking process. The fuzzy PID control approach effectively reduces parameter fluctuations, improves system stability, and decreases acceleration variations when faced with different initial speeds and braking distance signals. Consequently, the positioning accuracy of the robot is enhanced, and power consumption is reduced. This research provides important guidance for the development of new technologies in pipeline maintenance and emergency repair, particularly in the area of plugging operations under pressure.","PeriodicalId":506108,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering","volume":"411 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability analysis of braking and control system of pipeline intelligent plugging robot\",\"authors\":\"Zhengguo Jiang, Chong Xie, Minghai Zhou, Xiang Liu, Guangyao Li, Guorong Wang, Yang Tang\",\"doi\":\"10.1177/09544089241230286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the maintenance and emergency repair of oil and gas long-distance pipelines, the pipeline intelligent plugging robot is a new type of intelligent and efficient plugging device inside the pipeline. The stability of its braking and control system determines whether it can successfully seal high-pressure oil and gas inside the pipeline. This research is about intelligent plugging robots for pipelines that use the friction between the rubber hose and the pipe wall for braking. A hydraulic control system is designed, and a braking model for the robot is established. The hydraulic control system is simulated using a numerical simulation method, and the influence of different braking distances on system stability is investigated for various initial velocities of the robot. The results indicate that the fuzzy PID control hydraulic system exhibits a faster response with a maximum overshoot acceleration of −12.8 m/s2. The system achieves the desired acceleration of −0.14 m/s2 within 7 seconds and successfully completes the braking process. The fuzzy PID control approach effectively reduces parameter fluctuations, improves system stability, and decreases acceleration variations when faced with different initial speeds and braking distance signals. Consequently, the positioning accuracy of the robot is enhanced, and power consumption is reduced. This research provides important guidance for the development of new technologies in pipeline maintenance and emergency repair, particularly in the area of plugging operations under pressure.\",\"PeriodicalId\":506108,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering\",\"volume\":\"411 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/09544089241230286\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09544089241230286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Stability analysis of braking and control system of pipeline intelligent plugging robot
In the maintenance and emergency repair of oil and gas long-distance pipelines, the pipeline intelligent plugging robot is a new type of intelligent and efficient plugging device inside the pipeline. The stability of its braking and control system determines whether it can successfully seal high-pressure oil and gas inside the pipeline. This research is about intelligent plugging robots for pipelines that use the friction between the rubber hose and the pipe wall for braking. A hydraulic control system is designed, and a braking model for the robot is established. The hydraulic control system is simulated using a numerical simulation method, and the influence of different braking distances on system stability is investigated for various initial velocities of the robot. The results indicate that the fuzzy PID control hydraulic system exhibits a faster response with a maximum overshoot acceleration of −12.8 m/s2. The system achieves the desired acceleration of −0.14 m/s2 within 7 seconds and successfully completes the braking process. The fuzzy PID control approach effectively reduces parameter fluctuations, improves system stability, and decreases acceleration variations when faced with different initial speeds and braking distance signals. Consequently, the positioning accuracy of the robot is enhanced, and power consumption is reduced. This research provides important guidance for the development of new technologies in pipeline maintenance and emergency repair, particularly in the area of plugging operations under pressure.