{"title":"对 FSW 过程中的材料流动和缺陷形成进行数值模拟,以预测焊接故障位置","authors":"A. Choudhary, Rahul Jain","doi":"10.1177/09544054241229478","DOIUrl":null,"url":null,"abstract":"Predicting the failure location of welded specimens is of importance for various industrial applications. In friction stir welding, material flow and eventually defect have an effect on the failure location. In the current work, a three-dimensional coupled Eulerian Lagrangian (CEL) is developed to study the material flow and predict defects originating during friction stir welding of AA2024 having a thickness of 3 mm. To minimize defects and achieve good weld quality, a square-shaped pin is used. The developed model is validated with experimentally observed axial force and spindle torque. Numerically predicted defects have been validated with experimental fracture locations and strength to test the robustness of the model in quantifying defects. Peak temperature increased by 10.7% when rotational speed was increased from 600 to 1500 rpm. Also, the peak temperature rise of 6.1% is observed when the welding speed is increased from 60 to 150 mm/min. Higher rotational and welding speed led to lower defects. At 1500 rpm and 150 mm/min process conditions, the highest weld strength of 447 MPa is obtained. Material flow analysis is carried out for varying process parameters; an intermixing of material flow with a zig-zag pattern is observed for 1500 rpm, indicating better material flow as compared with 600 rpm.","PeriodicalId":20663,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical simulation of material flow and defect formation during FSW to predict weld failure location\",\"authors\":\"A. Choudhary, Rahul Jain\",\"doi\":\"10.1177/09544054241229478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Predicting the failure location of welded specimens is of importance for various industrial applications. In friction stir welding, material flow and eventually defect have an effect on the failure location. In the current work, a three-dimensional coupled Eulerian Lagrangian (CEL) is developed to study the material flow and predict defects originating during friction stir welding of AA2024 having a thickness of 3 mm. To minimize defects and achieve good weld quality, a square-shaped pin is used. The developed model is validated with experimentally observed axial force and spindle torque. Numerically predicted defects have been validated with experimental fracture locations and strength to test the robustness of the model in quantifying defects. Peak temperature increased by 10.7% when rotational speed was increased from 600 to 1500 rpm. Also, the peak temperature rise of 6.1% is observed when the welding speed is increased from 60 to 150 mm/min. Higher rotational and welding speed led to lower defects. At 1500 rpm and 150 mm/min process conditions, the highest weld strength of 447 MPa is obtained. Material flow analysis is carried out for varying process parameters; an intermixing of material flow with a zig-zag pattern is observed for 1500 rpm, indicating better material flow as compared with 600 rpm.\",\"PeriodicalId\":20663,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09544054241229478\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544054241229478","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Numerical simulation of material flow and defect formation during FSW to predict weld failure location
Predicting the failure location of welded specimens is of importance for various industrial applications. In friction stir welding, material flow and eventually defect have an effect on the failure location. In the current work, a three-dimensional coupled Eulerian Lagrangian (CEL) is developed to study the material flow and predict defects originating during friction stir welding of AA2024 having a thickness of 3 mm. To minimize defects and achieve good weld quality, a square-shaped pin is used. The developed model is validated with experimentally observed axial force and spindle torque. Numerically predicted defects have been validated with experimental fracture locations and strength to test the robustness of the model in quantifying defects. Peak temperature increased by 10.7% when rotational speed was increased from 600 to 1500 rpm. Also, the peak temperature rise of 6.1% is observed when the welding speed is increased from 60 to 150 mm/min. Higher rotational and welding speed led to lower defects. At 1500 rpm and 150 mm/min process conditions, the highest weld strength of 447 MPa is obtained. Material flow analysis is carried out for varying process parameters; an intermixing of material flow with a zig-zag pattern is observed for 1500 rpm, indicating better material flow as compared with 600 rpm.
期刊介绍:
Manufacturing industries throughout the world are changing very rapidly. New concepts and methods are being developed and exploited to enable efficient and effective manufacturing. Existing manufacturing processes are being improved to meet the requirements of lean and agile manufacturing. The aim of the Journal of Engineering Manufacture is to provide a focus for these developments in engineering manufacture by publishing original papers and review papers covering technological and scientific research, developments and management implementation in manufacturing. This journal is also peer reviewed.
Contributions are welcomed in the broad areas of manufacturing processes, manufacturing technology and factory automation, digital manufacturing, design and manufacturing systems including management relevant to engineering manufacture. Of particular interest at the present time would be papers concerned with digital manufacturing, metrology enabled manufacturing, smart factory, additive manufacturing and composites as well as specialist manufacturing fields like nanotechnology, sustainable & clean manufacturing and bio-manufacturing.
Articles may be Research Papers, Reviews, Technical Notes, or Short Communications.