论等距坐标下 Timoshenko 型各向同性浅壳的非线性边界值问题的可解性问题

S. Timergaliev
{"title":"论等距坐标下 Timoshenko 型各向同性浅壳的非线性边界值问题的可解性问题","authors":"S. Timergaliev","doi":"10.26907/0021-3446-2024-1-50-68","DOIUrl":null,"url":null,"abstract":"The solvability of a boundary value problem for a system, which describes the equilibrium state of elastic shallow inhomogeneous isotropic shells with loose edges referred to isometric coordinates in the Timoshenko shear model and consists of five non-linear second-order partial differential equations under given non-linear boundary conditions, is studied. The boundary value problem is reduced to a nonlinear operator equation for generalized displacements in Sobolev space, the solvability of this equation is established with the help of the contraction mapping principle.","PeriodicalId":507800,"journal":{"name":"Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika","volume":"48 29","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the problem of solvability of nonlinear boundary value problems for shallow isotropic shells of Timoshenko type in isometric coordinates\",\"authors\":\"S. Timergaliev\",\"doi\":\"10.26907/0021-3446-2024-1-50-68\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The solvability of a boundary value problem for a system, which describes the equilibrium state of elastic shallow inhomogeneous isotropic shells with loose edges referred to isometric coordinates in the Timoshenko shear model and consists of five non-linear second-order partial differential equations under given non-linear boundary conditions, is studied. The boundary value problem is reduced to a nonlinear operator equation for generalized displacements in Sobolev space, the solvability of this equation is established with the help of the contraction mapping principle.\",\"PeriodicalId\":507800,\"journal\":{\"name\":\"Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika\",\"volume\":\"48 29\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26907/0021-3446-2024-1-50-68\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26907/0021-3446-2024-1-50-68","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本论文研究了一个系统的边界值问题的可解性,该系统描述了在给定非线性边界条件下,具有松散边缘的弹性浅层非均质各向同性壳体的平衡状态,其坐标为 Timoshenko 剪切模型中的等距坐标,由五个非线性二阶偏微分方程组成。边界值问题被简化为索博廖夫空间中广义位移的非线性算子方程,借助收缩映射原理确定了该方程的可解性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the problem of solvability of nonlinear boundary value problems for shallow isotropic shells of Timoshenko type in isometric coordinates
The solvability of a boundary value problem for a system, which describes the equilibrium state of elastic shallow inhomogeneous isotropic shells with loose edges referred to isometric coordinates in the Timoshenko shear model and consists of five non-linear second-order partial differential equations under given non-linear boundary conditions, is studied. The boundary value problem is reduced to a nonlinear operator equation for generalized displacements in Sobolev space, the solvability of this equation is established with the help of the contraction mapping principle.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信