使用 CNN 和 Res-Net 识别交通标志

J. Cruz Antony, G. M. Karpura Dheepan, Veena K, Vellanki Vikas, Vuppala Satyamitra
{"title":"使用 CNN 和 Res-Net 识别交通标志","authors":"J. Cruz Antony, G. M. Karpura Dheepan, Veena K, Vellanki Vikas, Vuppala Satyamitra","doi":"10.4108/eetiot.5098","DOIUrl":null,"url":null,"abstract":"  \nIn the realm of contemporary applications and everyday life, the significance of object recognition and classification cannot be overstated. A multitude of valuable domains, including G-lens technology, cancer prediction, Optical Character Recognition (OCR), Face Recognition, and more, heavily rely on the efficacy of image identification algorithms. Among these, Convolutional Neural Networks (CNN) have emerged as a cutting-edge technique that excels in its aptitude for feature extraction, offering pragmatic solutions to a diverse array of object recognition challenges. CNN's notable strength is underscored by its swifter execution, rendering it particularly advantageous for real-time processing. The domain of traffic sign recognition holds profound importance, especially in the development of practical applications like autonomous driving for vehicles such as Tesla, as well as in the realm of traffic surveillance. In this research endeavour, the focus was directed towards the Belgium Traffic Signs Dataset (BTS), an encompassing repository comprising a total of 62 distinct traffic signs. By employing a CNN model, a meticulously methodical approach was obtained commencing with a rigorous phase of data pre-processing. This preparatory stage was complemented by the strategic incorporation of residual blocks during model training, thereby enhancing the network's ability to glean intricate features from traffic sign images. Notably, our proposed methodology yielded a commendable accuracy rate of 94.25%, demonstrating the system's robust and proficient recognition capabilities. The distinctive prowess of our methodology shines through its substantial improvements in specific parameters compared to pre-existing techniques. Our approach thrives in terms of accuracy, capitalizing on CNN's rapid execution speed, and offering an efficient means of feature extraction. By effectively training on a diverse dataset encompassing 62 varied traffic signs, our model showcases a promising potential for real-world applications. The overarching analysis highlights the efficacy of our proposed technique, reaffirming its potency in achieving precise traffic sign recognition and positioning it as a viable solution for real-time scenarios and autonomous systems.","PeriodicalId":506477,"journal":{"name":"EAI Endorsed Transactions on Internet of Things","volume":"48 40","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Traffic sign recognition using CNN and Res-Net\",\"authors\":\"J. Cruz Antony, G. M. Karpura Dheepan, Veena K, Vellanki Vikas, Vuppala Satyamitra\",\"doi\":\"10.4108/eetiot.5098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"  \\nIn the realm of contemporary applications and everyday life, the significance of object recognition and classification cannot be overstated. A multitude of valuable domains, including G-lens technology, cancer prediction, Optical Character Recognition (OCR), Face Recognition, and more, heavily rely on the efficacy of image identification algorithms. Among these, Convolutional Neural Networks (CNN) have emerged as a cutting-edge technique that excels in its aptitude for feature extraction, offering pragmatic solutions to a diverse array of object recognition challenges. CNN's notable strength is underscored by its swifter execution, rendering it particularly advantageous for real-time processing. The domain of traffic sign recognition holds profound importance, especially in the development of practical applications like autonomous driving for vehicles such as Tesla, as well as in the realm of traffic surveillance. In this research endeavour, the focus was directed towards the Belgium Traffic Signs Dataset (BTS), an encompassing repository comprising a total of 62 distinct traffic signs. By employing a CNN model, a meticulously methodical approach was obtained commencing with a rigorous phase of data pre-processing. This preparatory stage was complemented by the strategic incorporation of residual blocks during model training, thereby enhancing the network's ability to glean intricate features from traffic sign images. Notably, our proposed methodology yielded a commendable accuracy rate of 94.25%, demonstrating the system's robust and proficient recognition capabilities. The distinctive prowess of our methodology shines through its substantial improvements in specific parameters compared to pre-existing techniques. Our approach thrives in terms of accuracy, capitalizing on CNN's rapid execution speed, and offering an efficient means of feature extraction. By effectively training on a diverse dataset encompassing 62 varied traffic signs, our model showcases a promising potential for real-world applications. The overarching analysis highlights the efficacy of our proposed technique, reaffirming its potency in achieving precise traffic sign recognition and positioning it as a viable solution for real-time scenarios and autonomous systems.\",\"PeriodicalId\":506477,\"journal\":{\"name\":\"EAI Endorsed Transactions on Internet of Things\",\"volume\":\"48 40\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EAI Endorsed Transactions on Internet of Things\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4108/eetiot.5098\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EAI Endorsed Transactions on Internet of Things","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/eetiot.5098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在当代应用和日常生活中,物体识别和分类的重要性无论怎样强调都不为过。包括 G-lens 技术、癌症预测、光学字符识别 (OCR)、人脸识别等在内的众多重要领域都严重依赖于图像识别算法的功效。其中,卷积神经网络(CNN)已成为一种尖端技术,在特征提取方面表现出色,为各种物体识别挑战提供了实用的解决方案。CNN 的显著优势在于其执行速度更快,特别适合实时处理。交通标志识别领域具有深远的意义,尤其是在开发自动驾驶汽车(如特斯拉)等实际应用以及交通监控领域。在这项研究工作中,重点放在了比利时交通标志数据集(BTS)上,这是一个包含 62 个不同交通标志的资料库。通过采用 CNN 模型,从严格的数据预处理阶段开始,获得了一套严谨的方法。在这一准备阶段,我们还在模型训练过程中战略性地加入了残差块,从而增强了网络从交通标志图像中收集复杂特征的能力。值得注意的是,我们提出的方法获得了令人称道的 94.25% 的准确率,证明了系统强大而熟练的识别能力。与现有技术相比,我们的方法在特定参数上有了很大改进,这充分体现了我们的独特能力。我们的方法充分利用了 CNN 的快速执行速度,并提供了一种高效的特征提取方法,从而在准确性方面取得了巨大进步。通过在包含 62 种不同交通标志的多样化数据集上进行有效训练,我们的模型展示了在现实世界中应用的巨大潜力。总体分析强调了我们提出的技术的有效性,再次证实了它在实现精确交通标志识别方面的潜力,并将其定位为实时场景和自主系统的可行解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Traffic sign recognition using CNN and Res-Net
  In the realm of contemporary applications and everyday life, the significance of object recognition and classification cannot be overstated. A multitude of valuable domains, including G-lens technology, cancer prediction, Optical Character Recognition (OCR), Face Recognition, and more, heavily rely on the efficacy of image identification algorithms. Among these, Convolutional Neural Networks (CNN) have emerged as a cutting-edge technique that excels in its aptitude for feature extraction, offering pragmatic solutions to a diverse array of object recognition challenges. CNN's notable strength is underscored by its swifter execution, rendering it particularly advantageous for real-time processing. The domain of traffic sign recognition holds profound importance, especially in the development of practical applications like autonomous driving for vehicles such as Tesla, as well as in the realm of traffic surveillance. In this research endeavour, the focus was directed towards the Belgium Traffic Signs Dataset (BTS), an encompassing repository comprising a total of 62 distinct traffic signs. By employing a CNN model, a meticulously methodical approach was obtained commencing with a rigorous phase of data pre-processing. This preparatory stage was complemented by the strategic incorporation of residual blocks during model training, thereby enhancing the network's ability to glean intricate features from traffic sign images. Notably, our proposed methodology yielded a commendable accuracy rate of 94.25%, demonstrating the system's robust and proficient recognition capabilities. The distinctive prowess of our methodology shines through its substantial improvements in specific parameters compared to pre-existing techniques. Our approach thrives in terms of accuracy, capitalizing on CNN's rapid execution speed, and offering an efficient means of feature extraction. By effectively training on a diverse dataset encompassing 62 varied traffic signs, our model showcases a promising potential for real-world applications. The overarching analysis highlights the efficacy of our proposed technique, reaffirming its potency in achieving precise traffic sign recognition and positioning it as a viable solution for real-time scenarios and autonomous systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信