标量场、模糊、超轻、波、BEC 暗物质模型主要成就简评

Tonatiuh Matos, L. Ureña‐López, Jae-Weon Lee
{"title":"标量场、模糊、超轻、波、BEC 暗物质模型主要成就简评","authors":"Tonatiuh Matos, L. Ureña‐López, Jae-Weon Lee","doi":"10.3389/fspas.2024.1347518","DOIUrl":null,"url":null,"abstract":"The Scalar Field Dark Matter model has been known in various ways throughout its history; Fuzzy, BEC, Wave, Ultralight, Axion-like Dark Matter, etc. All of them consist in proposing that dark matter of the universe is a spinless field Φ that follows the Klein-Gordon (KG) equation of motion □Φ − dV/dΦ = 0, for a given scalar field potential V. The difference between different models is sometimes the choice of the scalar field potential V. In the literature we find that people usually work in the non-relativistic, weak-field limit of the Klein-Gordon equation, where it transforms into the Schrödinger equation and the Einstein equations into the Poisson equation, reducing the KG-Einstein system, to the Schrödinger-Poisson system. In this paper, we review some of the most interesting achievements of this model from the historical point of view and its comparison with observations, showing that this model could be the last answer to the question about the nature of dark matter in the universe.","PeriodicalId":507437,"journal":{"name":"Frontiers in Astronomy and Space Sciences","volume":"81 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Short review of the main achievements of the scalar field, fuzzy, ultralight, wave, BEC dark matter model\",\"authors\":\"Tonatiuh Matos, L. Ureña‐López, Jae-Weon Lee\",\"doi\":\"10.3389/fspas.2024.1347518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Scalar Field Dark Matter model has been known in various ways throughout its history; Fuzzy, BEC, Wave, Ultralight, Axion-like Dark Matter, etc. All of them consist in proposing that dark matter of the universe is a spinless field Φ that follows the Klein-Gordon (KG) equation of motion □Φ − dV/dΦ = 0, for a given scalar field potential V. The difference between different models is sometimes the choice of the scalar field potential V. In the literature we find that people usually work in the non-relativistic, weak-field limit of the Klein-Gordon equation, where it transforms into the Schrödinger equation and the Einstein equations into the Poisson equation, reducing the KG-Einstein system, to the Schrödinger-Poisson system. In this paper, we review some of the most interesting achievements of this model from the historical point of view and its comparison with observations, showing that this model could be the last answer to the question about the nature of dark matter in the universe.\",\"PeriodicalId\":507437,\"journal\":{\"name\":\"Frontiers in Astronomy and Space Sciences\",\"volume\":\"81 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Astronomy and Space Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fspas.2024.1347518\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Astronomy and Space Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fspas.2024.1347518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

标量场暗物质模型在其历史上有多种说法:模糊暗物质、BEC暗物质、波暗物质、超轻暗物质、类轴子暗物质等。它们都认为宇宙暗物质是一个无自旋场 Φ,在给定的标量场势 V 下遵循克莱因-戈登(KG)运动方程 □Φ - dV/dΦ = 0。在文献中,我们发现人们通常在克莱因-戈登方程的非相对论弱场极限下工作,在此方程中,克莱因-戈登方程转化为薛定谔方程,而爱因斯坦方程则转化为泊松方程,从而将KG-爱因斯坦系统简化为薛定谔-泊松系统。在本文中,我们从历史的角度回顾了这一模型的一些最有趣的成就,并与观测结果进行了比较,表明这一模型可能是宇宙中暗物质性质问题的最后答案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Short review of the main achievements of the scalar field, fuzzy, ultralight, wave, BEC dark matter model
The Scalar Field Dark Matter model has been known in various ways throughout its history; Fuzzy, BEC, Wave, Ultralight, Axion-like Dark Matter, etc. All of them consist in proposing that dark matter of the universe is a spinless field Φ that follows the Klein-Gordon (KG) equation of motion □Φ − dV/dΦ = 0, for a given scalar field potential V. The difference between different models is sometimes the choice of the scalar field potential V. In the literature we find that people usually work in the non-relativistic, weak-field limit of the Klein-Gordon equation, where it transforms into the Schrödinger equation and the Einstein equations into the Poisson equation, reducing the KG-Einstein system, to the Schrödinger-Poisson system. In this paper, we review some of the most interesting achievements of this model from the historical point of view and its comparison with observations, showing that this model could be the last answer to the question about the nature of dark matter in the universe.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信