{"title":"通过渐进式深度学习框架预测添加剂制造引起的孔隙周围的 4D 应力场演化","authors":"M. Rezasefat, James D. Hogan","doi":"10.1088/2632-2153/ad290c","DOIUrl":null,"url":null,"abstract":"\n This study investigates the application of machine learning models to predict time-evolving stress fields in complex three-dimensional structures trained with full-scale finite element simulation data. Two novel architectures, the Multi-Decoder CNN (MUDE-CNN) and the Multiple Encoder-Decoder Model with Transfer Learning (MTED-TL), were introduced to address the challenge of predicting the progressive and spatial evolutional of stress distributions around defects. The MUDE-CNN leveraged a shared encoder for simultaneous feature extraction and employed multiple decoders for distinct time frame predictions, while MTED-TL progressively transferred knowledge from one encoder-decoder block to another, thereby enhancing prediction accuracy through transfer learning. These models were evaluated to assess their accuracy, with a particular focus on predicting temporal stress fields around an additive manufacturing-induced isolated pore, as understanding such defects is crucial for assessing mechanical properties and structural integrity in materials and components fabricated via additive manufacturing. The temporal model evaluation demonstrated MTED-TL's consistent superiority over MUDE-CNN, owing to transfer learning's advantageous initialization of weights and smooth loss curves. Furthermore, an autoregressive training framework was introduced to improve temporal predictions, consistently outperforming both MUDE-CNN and MTED-TL. By accurately predicting temporal stress fields around AM-induced defects, these models can enable real-time monitoring and proactive defect mitigation during the fabrication process. This capability ensures enhanced component quality and enhances the overall reliability of additively manufactured parts.","PeriodicalId":503691,"journal":{"name":"Machine Learning: Science and Technology","volume":"48 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of 4D stress field evolution around additive manufacturing-induced porosity through progressive deep-learning frameworks\",\"authors\":\"M. Rezasefat, James D. Hogan\",\"doi\":\"10.1088/2632-2153/ad290c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This study investigates the application of machine learning models to predict time-evolving stress fields in complex three-dimensional structures trained with full-scale finite element simulation data. Two novel architectures, the Multi-Decoder CNN (MUDE-CNN) and the Multiple Encoder-Decoder Model with Transfer Learning (MTED-TL), were introduced to address the challenge of predicting the progressive and spatial evolutional of stress distributions around defects. The MUDE-CNN leveraged a shared encoder for simultaneous feature extraction and employed multiple decoders for distinct time frame predictions, while MTED-TL progressively transferred knowledge from one encoder-decoder block to another, thereby enhancing prediction accuracy through transfer learning. These models were evaluated to assess their accuracy, with a particular focus on predicting temporal stress fields around an additive manufacturing-induced isolated pore, as understanding such defects is crucial for assessing mechanical properties and structural integrity in materials and components fabricated via additive manufacturing. The temporal model evaluation demonstrated MTED-TL's consistent superiority over MUDE-CNN, owing to transfer learning's advantageous initialization of weights and smooth loss curves. Furthermore, an autoregressive training framework was introduced to improve temporal predictions, consistently outperforming both MUDE-CNN and MTED-TL. By accurately predicting temporal stress fields around AM-induced defects, these models can enable real-time monitoring and proactive defect mitigation during the fabrication process. This capability ensures enhanced component quality and enhances the overall reliability of additively manufactured parts.\",\"PeriodicalId\":503691,\"journal\":{\"name\":\"Machine Learning: Science and Technology\",\"volume\":\"48 10\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine Learning: Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2632-2153/ad290c\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning: Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2632-2153/ad290c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Prediction of 4D stress field evolution around additive manufacturing-induced porosity through progressive deep-learning frameworks
This study investigates the application of machine learning models to predict time-evolving stress fields in complex three-dimensional structures trained with full-scale finite element simulation data. Two novel architectures, the Multi-Decoder CNN (MUDE-CNN) and the Multiple Encoder-Decoder Model with Transfer Learning (MTED-TL), were introduced to address the challenge of predicting the progressive and spatial evolutional of stress distributions around defects. The MUDE-CNN leveraged a shared encoder for simultaneous feature extraction and employed multiple decoders for distinct time frame predictions, while MTED-TL progressively transferred knowledge from one encoder-decoder block to another, thereby enhancing prediction accuracy through transfer learning. These models were evaluated to assess their accuracy, with a particular focus on predicting temporal stress fields around an additive manufacturing-induced isolated pore, as understanding such defects is crucial for assessing mechanical properties and structural integrity in materials and components fabricated via additive manufacturing. The temporal model evaluation demonstrated MTED-TL's consistent superiority over MUDE-CNN, owing to transfer learning's advantageous initialization of weights and smooth loss curves. Furthermore, an autoregressive training framework was introduced to improve temporal predictions, consistently outperforming both MUDE-CNN and MTED-TL. By accurately predicting temporal stress fields around AM-induced defects, these models can enable real-time monitoring and proactive defect mitigation during the fabrication process. This capability ensures enhanced component quality and enhances the overall reliability of additively manufactured parts.