使用 Nyström 近似法进行高效核典型相关分析

Qin Fang, Lei Shi, Min Xu, Ding-Xuan Zhou
{"title":"使用 Nyström 近似法进行高效核典型相关分析","authors":"Qin Fang, Lei Shi, Min Xu, Ding-Xuan Zhou","doi":"10.1088/1361-6420/ad2900","DOIUrl":null,"url":null,"abstract":"\n The main contribution of this paper is the derivation of non-asymptotic convergence rates for Nystr\"om kernel CCA in a setting of statistical learning. Our theoretical results reveal that, under certain conditions, Nystr\"om kernel CCA can achieve a convergence rate comparable to that of the standard kernel CCA, while offering significant computational savings. This finding has important implications for the practical application of kernel CCA, particularly in scenarios where computational efficiency is crucial. Numerical experiments are provided to demonstrate the effectiveness of Nystr\"om kernel CCA.","PeriodicalId":508687,"journal":{"name":"Inverse Problems","volume":"65 21","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient kernel canonical correlation analysis using Nyström approximation\",\"authors\":\"Qin Fang, Lei Shi, Min Xu, Ding-Xuan Zhou\",\"doi\":\"10.1088/1361-6420/ad2900\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The main contribution of this paper is the derivation of non-asymptotic convergence rates for Nystr\\\"om kernel CCA in a setting of statistical learning. Our theoretical results reveal that, under certain conditions, Nystr\\\"om kernel CCA can achieve a convergence rate comparable to that of the standard kernel CCA, while offering significant computational savings. This finding has important implications for the practical application of kernel CCA, particularly in scenarios where computational efficiency is crucial. Numerical experiments are provided to demonstrate the effectiveness of Nystr\\\"om kernel CCA.\",\"PeriodicalId\":508687,\"journal\":{\"name\":\"Inverse Problems\",\"volume\":\"65 21\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inverse Problems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6420/ad2900\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse Problems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6420/ad2900","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文的主要贡献在于推导了统计学习环境下 Nystr "om 内核 CCA 的非渐近收敛率。我们的理论结果表明,在某些条件下,Nystr "om 内核 CCA 可以达到与标准内核 CCA 相当的收敛率,同时显著节省计算量。这一发现对内核 CCA 的实际应用具有重要意义,尤其是在计算效率至关重要的情况下。数值实验证明了 Nystr "om 内核 CCA 的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient kernel canonical correlation analysis using Nyström approximation
The main contribution of this paper is the derivation of non-asymptotic convergence rates for Nystr"om kernel CCA in a setting of statistical learning. Our theoretical results reveal that, under certain conditions, Nystr"om kernel CCA can achieve a convergence rate comparable to that of the standard kernel CCA, while offering significant computational savings. This finding has important implications for the practical application of kernel CCA, particularly in scenarios where computational efficiency is crucial. Numerical experiments are provided to demonstrate the effectiveness of Nystr"om kernel CCA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信