利用 SPOA-RBFNN 技术优化电动汽车的规模和财务成本

P. Kannan, M. Sivakumar, R. Ruban Raja
{"title":"利用 SPOA-RBFNN 技术优化电动汽车的规模和财务成本","authors":"P. Kannan, M. Sivakumar, R. Ruban Raja","doi":"10.1177/0958305x231225101","DOIUrl":null,"url":null,"abstract":"This study proposes a hybrid technique for optimal sizing and cost optimization of hybrid energy storage systems (HESS) integrated into electric vehicles (EVs). The proposed technique, SPOA-RBFNN, combines a student psychology-based optimization algorithm (SPOA) and a radial-basis function neural network (RBFNN). The study aims to minimize the overall cost of the HESS by evaluating two design variables: the super-capacitor (SC) and battery pack size. SPOA is employed to optimize the hybrid HESS design variables, ensuring efficient exploration of solution spaces. The RBFNN method is then used to predict the relationship between these design variables and the overall cost of the HESS in electric vehicles. The results show that the proposed technique is more effective than existing techniques, with an efficiency of 97.99039% compared to 82.137% for GA and 77.26589% for particle swarm optimization (PSO). This work offers a comprehensive and innovative approach to optimizing HESS sizing in EVs, connecting the gap between performance optimization and financial cost analysis.","PeriodicalId":505265,"journal":{"name":"Energy & Environment","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal sizing and optimization of financial cost for EVs using SPOA-RBFNN technique\",\"authors\":\"P. Kannan, M. Sivakumar, R. Ruban Raja\",\"doi\":\"10.1177/0958305x231225101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study proposes a hybrid technique for optimal sizing and cost optimization of hybrid energy storage systems (HESS) integrated into electric vehicles (EVs). The proposed technique, SPOA-RBFNN, combines a student psychology-based optimization algorithm (SPOA) and a radial-basis function neural network (RBFNN). The study aims to minimize the overall cost of the HESS by evaluating two design variables: the super-capacitor (SC) and battery pack size. SPOA is employed to optimize the hybrid HESS design variables, ensuring efficient exploration of solution spaces. The RBFNN method is then used to predict the relationship between these design variables and the overall cost of the HESS in electric vehicles. The results show that the proposed technique is more effective than existing techniques, with an efficiency of 97.99039% compared to 82.137% for GA and 77.26589% for particle swarm optimization (PSO). This work offers a comprehensive and innovative approach to optimizing HESS sizing in EVs, connecting the gap between performance optimization and financial cost analysis.\",\"PeriodicalId\":505265,\"journal\":{\"name\":\"Energy & Environment\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy & Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/0958305x231225101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/0958305x231225101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种混合技术,用于优化集成到电动汽车(EV)中的混合储能系统(HESS)的大小和成本。所提出的 SPOA-RBFNN 技术结合了基于学生心理的优化算法 (SPOA) 和径向基函数神经网络 (RBFNN)。该研究旨在通过评估超级电容器(SC)和电池组尺寸这两个设计变量,最大限度地降低 HESS 的总体成本。采用 SPOA 来优化混合 HESS 设计变量,确保有效探索解决方案空间。然后使用 RBFNN 方法预测这些设计变量与电动汽车 HESS 总体成本之间的关系。结果表明,所提出的技术比现有技术更有效,其效率为 97.99039%,而 GA 为 82.137%,粒子群优化(PSO)为 77.26589%。这项工作为优化电动汽车 HESS 的大小提供了一种全面而创新的方法,填补了性能优化与财务成本分析之间的空白。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal sizing and optimization of financial cost for EVs using SPOA-RBFNN technique
This study proposes a hybrid technique for optimal sizing and cost optimization of hybrid energy storage systems (HESS) integrated into electric vehicles (EVs). The proposed technique, SPOA-RBFNN, combines a student psychology-based optimization algorithm (SPOA) and a radial-basis function neural network (RBFNN). The study aims to minimize the overall cost of the HESS by evaluating two design variables: the super-capacitor (SC) and battery pack size. SPOA is employed to optimize the hybrid HESS design variables, ensuring efficient exploration of solution spaces. The RBFNN method is then used to predict the relationship between these design variables and the overall cost of the HESS in electric vehicles. The results show that the proposed technique is more effective than existing techniques, with an efficiency of 97.99039% compared to 82.137% for GA and 77.26589% for particle swarm optimization (PSO). This work offers a comprehensive and innovative approach to optimizing HESS sizing in EVs, connecting the gap between performance optimization and financial cost analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信