论近矢量空间的直接和与商空间

Pub Date : 2024-02-13 DOI:10.1007/s13370-024-01168-7
K. -T. Howell, P. Cara, L. Wessels
{"title":"论近矢量空间的直接和与商空间","authors":"K. -T. Howell,&nbsp;P. Cara,&nbsp;L. Wessels","doi":"10.1007/s13370-024-01168-7","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we study the direct sums of subspaces and some constructions of quotient spaces of near-vector spaces, as defined by André. In particular, for near-vector spaces constructed by taking copies of finite fields, we characterise the quasi-kernels of their quotient spaces, find their cardinality and determine when they are regular. In the case of non-regular quotient spaces, we show how they decompose into maximal regular subspaces. We show how the theory of finite-dimensional near-vector spaces constructed from finite fields allows us to reconstruct near-vector spaces with certain quotient spaces.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13370-024-01168-7.pdf","citationCount":"0","resultStr":"{\"title\":\"On direct sums and quotient spaces of near-vector spaces\",\"authors\":\"K. -T. Howell,&nbsp;P. Cara,&nbsp;L. Wessels\",\"doi\":\"10.1007/s13370-024-01168-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper we study the direct sums of subspaces and some constructions of quotient spaces of near-vector spaces, as defined by André. In particular, for near-vector spaces constructed by taking copies of finite fields, we characterise the quasi-kernels of their quotient spaces, find their cardinality and determine when they are regular. In the case of non-regular quotient spaces, we show how they decompose into maximal regular subspaces. We show how the theory of finite-dimensional near-vector spaces constructed from finite fields allows us to reconstruct near-vector spaces with certain quotient spaces.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s13370-024-01168-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13370-024-01168-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13370-024-01168-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了子空间的直接和以及安德烈定义的近矢量空间商空间的一些构造。特别是,对于通过提取有限域的副本构造的近矢量空间,我们描述了其商数空间的准核的特征,找到了它们的心性,并确定了它们的规则性。对于非规则商空间,我们展示了它们如何分解为最大规则子空间。我们展示了由有限域构造的有限维近矢量空间理论如何让我们用某些商空间重构近矢量空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On direct sums and quotient spaces of near-vector spaces

In this paper we study the direct sums of subspaces and some constructions of quotient spaces of near-vector spaces, as defined by André. In particular, for near-vector spaces constructed by taking copies of finite fields, we characterise the quasi-kernels of their quotient spaces, find their cardinality and determine when they are regular. In the case of non-regular quotient spaces, we show how they decompose into maximal regular subspaces. We show how the theory of finite-dimensional near-vector spaces constructed from finite fields allows us to reconstruct near-vector spaces with certain quotient spaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信