利用自动微分对基于模型诊断的参数估计进行定性和定量改进,并将其应用于惯性融合

A. Milder, A. S. Joglekar, W. Rozmus, D. H. Froula
{"title":"利用自动微分对基于模型诊断的参数估计进行定性和定量改进,并将其应用于惯性融合","authors":"A. Milder, A. S. Joglekar, W. Rozmus, D. H. Froula","doi":"10.1088/2632-2153/ad2493","DOIUrl":null,"url":null,"abstract":"\n Parameter estimation using observables is a fundamental concept in the experimental sciences. Mathematical models that represent the physical processes can enable reconstructions of the experimental observables and greatly assist in parameter estimation by turning it into an optimization problem which can be solved by gradient-free or gradient-based methods. In this work, the recent rise in flexible frameworks for developing differentiable scientific computing programs is leveraged in order to dramatically accelerate data analysis of a common experimental diagnostic relevant to laser–plasma and inertial fusion experiments, Thomson scattering. A differentiable Thomson-scattering data analysis tool is developed that uses reverse-mode automatic differentiation (AD) to calculate gradients. By switching from finite differencing to reverse-mode AD, three distinct outcomes are achieved. First, gradient descent is accelerated dramatically to the extent that it enables near real-time usage in laser–plasma experiments. Second, qualitatively novel quantities which require \n \n \n \n O\n \n (\n \n 10\n 3\n \n )\n \n \n parameters can now be included in the analysis of data which enables unprecedented measurements of small-scale laser–plasma phenomena. Third, uncertainty estimation approaches that leverage the value of the Hessian become accurate and efficient because reverse-mode AD can be used for calculating the Hessian.","PeriodicalId":503691,"journal":{"name":"Machine Learning: Science and Technology","volume":"89 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Qualitative and quantitative enhancement of parameter estimation for model-based diagnostics using automatic differentiation with an application to inertial fusion\",\"authors\":\"A. Milder, A. S. Joglekar, W. Rozmus, D. H. Froula\",\"doi\":\"10.1088/2632-2153/ad2493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Parameter estimation using observables is a fundamental concept in the experimental sciences. Mathematical models that represent the physical processes can enable reconstructions of the experimental observables and greatly assist in parameter estimation by turning it into an optimization problem which can be solved by gradient-free or gradient-based methods. In this work, the recent rise in flexible frameworks for developing differentiable scientific computing programs is leveraged in order to dramatically accelerate data analysis of a common experimental diagnostic relevant to laser–plasma and inertial fusion experiments, Thomson scattering. A differentiable Thomson-scattering data analysis tool is developed that uses reverse-mode automatic differentiation (AD) to calculate gradients. By switching from finite differencing to reverse-mode AD, three distinct outcomes are achieved. First, gradient descent is accelerated dramatically to the extent that it enables near real-time usage in laser–plasma experiments. Second, qualitatively novel quantities which require \\n \\n \\n \\n O\\n \\n (\\n \\n 10\\n 3\\n \\n )\\n \\n \\n parameters can now be included in the analysis of data which enables unprecedented measurements of small-scale laser–plasma phenomena. Third, uncertainty estimation approaches that leverage the value of the Hessian become accurate and efficient because reverse-mode AD can be used for calculating the Hessian.\",\"PeriodicalId\":503691,\"journal\":{\"name\":\"Machine Learning: Science and Technology\",\"volume\":\"89 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine Learning: Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2632-2153/ad2493\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning: Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2632-2153/ad2493","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用观测数据进行参数估计是实验科学的一个基本概念。表示物理过程的数学模型可以重构实验观测值,并通过将其转化为优化问题来极大地帮助参数估计,而优化问题可以通过无梯度或基于梯度的方法来解决。在这项工作中,我们利用了最近兴起的用于开发可微分科学计算程序的灵活框架,以显著加快与激光等离子体和惯性聚变实验相关的常见实验诊断--汤姆逊散射--的数据分析。我们开发了一种可微分的汤姆逊散射数据分析工具,它使用反向模式自动微分(AD)来计算梯度。通过从有限差分转换到反向模式自动差分,实现了三个不同的结果。首先,梯度下降的速度大大加快,在激光等离子体实验中几乎可以实时使用。其次,需要 O ( 10 3 ) 个参数的定性新量现在可以纳入数据分析,从而实现对小尺度激光等离子体现象的前所未有的测量。第三,利用赫塞斯值的不确定性估计方法变得精确而高效,因为反向模式 AD 可用于计算赫塞斯。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Qualitative and quantitative enhancement of parameter estimation for model-based diagnostics using automatic differentiation with an application to inertial fusion
Parameter estimation using observables is a fundamental concept in the experimental sciences. Mathematical models that represent the physical processes can enable reconstructions of the experimental observables and greatly assist in parameter estimation by turning it into an optimization problem which can be solved by gradient-free or gradient-based methods. In this work, the recent rise in flexible frameworks for developing differentiable scientific computing programs is leveraged in order to dramatically accelerate data analysis of a common experimental diagnostic relevant to laser–plasma and inertial fusion experiments, Thomson scattering. A differentiable Thomson-scattering data analysis tool is developed that uses reverse-mode automatic differentiation (AD) to calculate gradients. By switching from finite differencing to reverse-mode AD, three distinct outcomes are achieved. First, gradient descent is accelerated dramatically to the extent that it enables near real-time usage in laser–plasma experiments. Second, qualitatively novel quantities which require O ( 10 3 ) parameters can now be included in the analysis of data which enables unprecedented measurements of small-scale laser–plasma phenomena. Third, uncertainty estimation approaches that leverage the value of the Hessian become accurate and efficient because reverse-mode AD can be used for calculating the Hessian.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信