监测地表温度与越南海阳省土地利用和土地覆盖的关系

Q3 Environmental Science
B. Thien, Asya E. Ovsepyan, V. T. Phuong
{"title":"监测地表温度与越南海阳省土地利用和土地覆盖的关系","authors":"B. Thien, Asya E. Ovsepyan, V. T. Phuong","doi":"10.32526/ennrj/22/20230194","DOIUrl":null,"url":null,"abstract":"This study utilised remote sensing data and ArcGIS 10.8 software to evaluate changes in land use and land cover (LULC) and their effects on land surface temperature (LST) in Hai Duong Province, Vietnam, from 1992 to 2022. Landsat satellite data were pre-processed and classified using supervised methods for the years 1992, 2010, and 2022. In 1992, vegetation cover accounted for 57.89% of land cover, increasing to 84.49% in 2010, but then decreasing again to 66.67% in 2022. In contrast, the built-up area consistently increased, from 2.88% in 1992 to 29.35% in 2022, as most of the barren land present in 1992 became built-up area in 2022. The LST values were calculated from the thermal bands for the years 1992, 2010, and 2022 and ranged from 16.09°C to 34.27°C, 17.04°C to 36.74°C, and 11.03°C to 28.44°C, respectively. In addition, the Normalized Difference Vegetation Index (NDVI) values were calculated using the near-infrared band and the red band, with values ranging from -0.40 to 0.70 over the study period. A linear regression analysis indicated a shift in the correlation between NDVI and LST from positive to negative. This study highlights the significant transformation that occurred in Hai Duong Province due to rapid population density increases, urban growth and infrastructure development, leading to a decline in greenery. These LULC changes can cause severe environmental damage. These research findings will assist policymakers in formulating management strategies and sustainable land-use plans to minimize potential harm and promote sustainable development in the area.","PeriodicalId":11784,"journal":{"name":"Environment and Natural Resources Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monitoring Land Surface Temperature Relationship to Land Use and Land Cover in Hai Duong Province, Vietnam\",\"authors\":\"B. Thien, Asya E. Ovsepyan, V. T. Phuong\",\"doi\":\"10.32526/ennrj/22/20230194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study utilised remote sensing data and ArcGIS 10.8 software to evaluate changes in land use and land cover (LULC) and their effects on land surface temperature (LST) in Hai Duong Province, Vietnam, from 1992 to 2022. Landsat satellite data were pre-processed and classified using supervised methods for the years 1992, 2010, and 2022. In 1992, vegetation cover accounted for 57.89% of land cover, increasing to 84.49% in 2010, but then decreasing again to 66.67% in 2022. In contrast, the built-up area consistently increased, from 2.88% in 1992 to 29.35% in 2022, as most of the barren land present in 1992 became built-up area in 2022. The LST values were calculated from the thermal bands for the years 1992, 2010, and 2022 and ranged from 16.09°C to 34.27°C, 17.04°C to 36.74°C, and 11.03°C to 28.44°C, respectively. In addition, the Normalized Difference Vegetation Index (NDVI) values were calculated using the near-infrared band and the red band, with values ranging from -0.40 to 0.70 over the study period. A linear regression analysis indicated a shift in the correlation between NDVI and LST from positive to negative. This study highlights the significant transformation that occurred in Hai Duong Province due to rapid population density increases, urban growth and infrastructure development, leading to a decline in greenery. These LULC changes can cause severe environmental damage. These research findings will assist policymakers in formulating management strategies and sustainable land-use plans to minimize potential harm and promote sustainable development in the area.\",\"PeriodicalId\":11784,\"journal\":{\"name\":\"Environment and Natural Resources Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environment and Natural Resources Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32526/ennrj/22/20230194\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environment and Natural Resources Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32526/ennrj/22/20230194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用遥感数据和 ArcGIS 10.8 软件,评估了 1992 年至 2022 年越南海阳省土地利用和土地覆盖(LULC)的变化及其对地表温度(LST)的影响。采用监督方法对 1992 年、2010 年和 2022 年的陆地卫星数据进行了预处理和分类。1992 年,植被覆盖面积占土地覆盖面积的 57.89%,2010 年增至 84.49%,但到 2022 年又降至 66.67%。相比之下,建成区面积持续增加,从 1992 年的 2.88% 增加到 2022 年的 29.35%,因为 1992 年的大部分荒芜土地到 2022 年都变成了建成区。根据 1992 年、2010 年和 2022 年的热量带计算出的 LST 值分别为 16.09°C 至 34.27°C、17.04°C 至 36.74°C、11.03°C 至 28.44°C。此外,还利用近红外波段和红色波段计算了归一化植被指数(NDVI)值,研究期间的数值范围为-0.40 至 0.70。线性回归分析表明,NDVI 与 LST 之间的相关性由正转负。这项研究突显了海阳省由于人口密度迅速增加、城市增长和基础设施发展而发生的重大变化,导致绿化减少。这些 LULC 变化会对环境造成严重破坏。这些研究结果将有助于决策者制定管理策略和可持续土地利用计划,以最大限度地减少潜在危害,促进该地区的可持续发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Monitoring Land Surface Temperature Relationship to Land Use and Land Cover in Hai Duong Province, Vietnam
This study utilised remote sensing data and ArcGIS 10.8 software to evaluate changes in land use and land cover (LULC) and their effects on land surface temperature (LST) in Hai Duong Province, Vietnam, from 1992 to 2022. Landsat satellite data were pre-processed and classified using supervised methods for the years 1992, 2010, and 2022. In 1992, vegetation cover accounted for 57.89% of land cover, increasing to 84.49% in 2010, but then decreasing again to 66.67% in 2022. In contrast, the built-up area consistently increased, from 2.88% in 1992 to 29.35% in 2022, as most of the barren land present in 1992 became built-up area in 2022. The LST values were calculated from the thermal bands for the years 1992, 2010, and 2022 and ranged from 16.09°C to 34.27°C, 17.04°C to 36.74°C, and 11.03°C to 28.44°C, respectively. In addition, the Normalized Difference Vegetation Index (NDVI) values were calculated using the near-infrared band and the red band, with values ranging from -0.40 to 0.70 over the study period. A linear regression analysis indicated a shift in the correlation between NDVI and LST from positive to negative. This study highlights the significant transformation that occurred in Hai Duong Province due to rapid population density increases, urban growth and infrastructure development, leading to a decline in greenery. These LULC changes can cause severe environmental damage. These research findings will assist policymakers in formulating management strategies and sustainable land-use plans to minimize potential harm and promote sustainable development in the area.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environment and Natural Resources Journal
Environment and Natural Resources Journal Environmental Science-Environmental Science (all)
CiteScore
1.90
自引率
0.00%
发文量
49
审稿时长
8 weeks
期刊介绍: The Environment and Natural Resources Journal is a peer-reviewed journal, which provides insight scientific knowledge into the diverse dimensions of integrated environmental and natural resource management. The journal aims to provide a platform for exchange and distribution of the knowledge and cutting-edge research in the fields of environmental science and natural resource management to academicians, scientists and researchers. The journal accepts a varied array of manuscripts on all aspects of environmental science and natural resource management. The journal scope covers the integration of multidisciplinary sciences for prevention, control, treatment, environmental clean-up and restoration. The study of the existing or emerging problems of environment and natural resources in the region of Southeast Asia and the creation of novel knowledge and/or recommendations of mitigation measures for sustainable development policies are emphasized. The subject areas are diverse, but specific topics of interest include: -Biodiversity -Climate change -Detection and monitoring of polluted sources e.g., industry, mining -Disaster e.g., forest fire, flooding, earthquake, tsunami, or tidal wave -Ecological/Environmental modelling -Emerging contaminants/hazardous wastes investigation and remediation -Environmental dynamics e.g., coastal erosion, sea level rise -Environmental assessment tools, policy and management e.g., GIS, remote sensing, Environmental -Management System (EMS) -Environmental pollution and other novel solutions to pollution -Remediation technology of contaminated environments -Transboundary pollution -Waste and wastewater treatments and disposal technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信