具有局部开尔文-沃伊特耗散的布雷斯梁模型的西格诺里尼问题

IF 0.8 4区 数学 Q2 MATHEMATICS
Jaime E. Munoz Rivera, C. A. D. C. Baldez, S. M. Cordeiro
{"title":"具有局部开尔文-沃伊特耗散的布雷斯梁模型的西格诺里尼问题","authors":"Jaime E. Munoz Rivera, C. A. D. C. Baldez, S. M. Cordeiro","doi":"10.58997/ejde.2024.17","DOIUrl":null,"url":null,"abstract":"We prove the existence of a global solution to Signorini's problem for the localized viscoelastic Bresse beam model (circular arc) with continuous and discontinuous constitutive laws. We show that when the constitutive law is continuous, the solution decays exponentially to zero, and when the constitutive law is discontinuous the solution decays only polynomially to zero. The method we use for proving our result is different the others already used in Signorini's problem and is based on approximations through a hybrid model. Also, we present some numerical results using discrete approximations in time and space, based on the finite element method on the spatial variable and the implicit Newmark method to the discretized the temporal variable. \nFor more information see https://ejde.math.txstate.edu/Volumes/2024/17/abstr.html","PeriodicalId":49213,"journal":{"name":"Electronic Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Signorini's problem for the Bresse beam model with localized Kelvin-Voigt dissipation\",\"authors\":\"Jaime E. Munoz Rivera, C. A. D. C. Baldez, S. M. Cordeiro\",\"doi\":\"10.58997/ejde.2024.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove the existence of a global solution to Signorini's problem for the localized viscoelastic Bresse beam model (circular arc) with continuous and discontinuous constitutive laws. We show that when the constitutive law is continuous, the solution decays exponentially to zero, and when the constitutive law is discontinuous the solution decays only polynomially to zero. The method we use for proving our result is different the others already used in Signorini's problem and is based on approximations through a hybrid model. Also, we present some numerical results using discrete approximations in time and space, based on the finite element method on the spatial variable and the implicit Newmark method to the discretized the temporal variable. \\nFor more information see https://ejde.math.txstate.edu/Volumes/2024/17/abstr.html\",\"PeriodicalId\":49213,\"journal\":{\"name\":\"Electronic Journal of Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.58997/ejde.2024.17\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.58997/ejde.2024.17","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了局部粘弹性布雷斯梁模型(圆弧)的 Signorini 问题的全局解的存在,该模型具有连续和不连续的构成规律。我们证明,当构成规律是连续的,解会以指数形式衰减为零,而当构成规律是不连续的,解只会以多项式形式衰减为零。我们用于证明结果的方法与 Signorini 问题中已使用的其他方法不同,它是基于混合模型的近似方法。此外,我们还介绍了一些使用时间和空间离散近似值的数值结果,这些近似值基于空间变量的有限元法和时间变量离散化的隐式纽马克法。更多信息,请参见 https://ejde.math.txstate.edu/Volumes/2024/17/abstr.html
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Signorini's problem for the Bresse beam model with localized Kelvin-Voigt dissipation
We prove the existence of a global solution to Signorini's problem for the localized viscoelastic Bresse beam model (circular arc) with continuous and discontinuous constitutive laws. We show that when the constitutive law is continuous, the solution decays exponentially to zero, and when the constitutive law is discontinuous the solution decays only polynomially to zero. The method we use for proving our result is different the others already used in Signorini's problem and is based on approximations through a hybrid model. Also, we present some numerical results using discrete approximations in time and space, based on the finite element method on the spatial variable and the implicit Newmark method to the discretized the temporal variable. For more information see https://ejde.math.txstate.edu/Volumes/2024/17/abstr.html
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Journal of Differential Equations
Electronic Journal of Differential Equations MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.50
自引率
14.30%
发文量
1
审稿时长
3 months
期刊介绍: All topics on differential equations and their applications (ODEs, PDEs, integral equations, delay equations, functional differential equations, etc.) will be considered for publication in Electronic Journal of Differential Equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信