关于Ψ和图的第一古拉瓦指数的一些界限

Hao Zhou, Maqsood Ahmad, Muhammad Kamran Siddiqui
{"title":"关于Ψ和图的第一古拉瓦指数的一些界限","authors":"Hao Zhou, Maqsood Ahmad, Muhammad Kamran Siddiqui","doi":"10.1142/s179383092450006x","DOIUrl":null,"url":null,"abstract":"Graph operations play a significant role in constructing new and valuable graphs and capturing intermolecular forces between atoms and bonds of a molecule. In mathematical chemistry and chemical graph theory, a topological invariant is a numeric value extracted from the molecular graph of a chemical compound using a mathematical formula involving vertex degrees, distance, spectrum, and their combination. An intriguing problem in chemical graph theory is figuring out the lower and the upper bound on pertinent topological indices among a particular family of graphs. The first Gourava index for a graph [Formula: see text] is denoted and defined as [Formula: see text] Recently, Kulli studied and derived formulas of the first Gourava index for four graph operations. We proved with the help of counter-examples that the results provided by Kulli produce inaccurate values when compared with exact values. In this paper, we determined the exact formulas and bounds of the first Gourava index for [Formula: see text]-sum graphs. Besides, we presented diverse examples to support our results.","PeriodicalId":504044,"journal":{"name":"Discrete Mathematics, Algorithms and Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On some bounds of first Gourava index for Ψ-sum graphs\",\"authors\":\"Hao Zhou, Maqsood Ahmad, Muhammad Kamran Siddiqui\",\"doi\":\"10.1142/s179383092450006x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graph operations play a significant role in constructing new and valuable graphs and capturing intermolecular forces between atoms and bonds of a molecule. In mathematical chemistry and chemical graph theory, a topological invariant is a numeric value extracted from the molecular graph of a chemical compound using a mathematical formula involving vertex degrees, distance, spectrum, and their combination. An intriguing problem in chemical graph theory is figuring out the lower and the upper bound on pertinent topological indices among a particular family of graphs. The first Gourava index for a graph [Formula: see text] is denoted and defined as [Formula: see text] Recently, Kulli studied and derived formulas of the first Gourava index for four graph operations. We proved with the help of counter-examples that the results provided by Kulli produce inaccurate values when compared with exact values. In this paper, we determined the exact formulas and bounds of the first Gourava index for [Formula: see text]-sum graphs. Besides, we presented diverse examples to support our results.\",\"PeriodicalId\":504044,\"journal\":{\"name\":\"Discrete Mathematics, Algorithms and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics, Algorithms and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s179383092450006x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics, Algorithms and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s179383092450006x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

图运算在构建新的、有价值的图以及捕捉分子中原子和键之间的分子间作用力方面发挥着重要作用。在数学化学和化学图论中,拓扑不变量是从化合物分子图中提取的数值,使用的数学公式涉及顶点度、距离、光谱及其组合。化学图论中一个引人入胜的问题是找出特定图族中相关拓扑指数的下限和上限。图的第一古拉瓦指数[公式:见正文]表示为[公式:见正文],定义为[公式:见正文]最近,库利研究并推导出了四种图运算的第一古拉瓦指数公式。我们借助反例证明,与精确值相比,Kulli 提供的结果会产生不准确的值。在本文中,我们确定了[公式:见正文]和图的第一古拉瓦指数的精确公式和边界。此外,我们还列举了各种实例来支持我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On some bounds of first Gourava index for Ψ-sum graphs
Graph operations play a significant role in constructing new and valuable graphs and capturing intermolecular forces between atoms and bonds of a molecule. In mathematical chemistry and chemical graph theory, a topological invariant is a numeric value extracted from the molecular graph of a chemical compound using a mathematical formula involving vertex degrees, distance, spectrum, and their combination. An intriguing problem in chemical graph theory is figuring out the lower and the upper bound on pertinent topological indices among a particular family of graphs. The first Gourava index for a graph [Formula: see text] is denoted and defined as [Formula: see text] Recently, Kulli studied and derived formulas of the first Gourava index for four graph operations. We proved with the help of counter-examples that the results provided by Kulli produce inaccurate values when compared with exact values. In this paper, we determined the exact formulas and bounds of the first Gourava index for [Formula: see text]-sum graphs. Besides, we presented diverse examples to support our results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信