汽车内燃机进气过滤材料的实验研究

T. Dziubak
{"title":"汽车内燃机进气过滤材料的实验研究","authors":"T. Dziubak","doi":"10.19206/ce-178374","DOIUrl":null,"url":null,"abstract":"Experimental evaluation of the properties of filter materials in the selection of material for filtration of inlet air of internal combustion engines was carried out. The filtration characteristics were determined: filtration efficiency and accuracy, as well as flow resistance depending on the dust mass load. Filter materials based on cellulose, polyester, microfiber glass, and cotton and polyester nonwoven beds were studied. Two filter beds consisting of three base filter materials were designed: composite K1 (polyester-microglass-cellulose) and composite K2 (cellulose-microglass-cellulose), and their characteristics were performed. The air filtration quality factor was used to analyze the test results. The coefficient of filtration efficiency was defined, showing the effect of the preliminary stage on the total time of the filtration process. It was shown that the K1 composite has high (dpmax = 1.5÷3 µm) filtration accuracy, high initial filtration efficiency (99.8%), which shortens the pre-stage, and extends to 96-98% the duration of the main stage of the filtration process. The K1 composite obtained more than twice the mass loading of dust (kdK1 = 148,9 g/m2), which will allow the vehicle's mileage to be extended.","PeriodicalId":34258,"journal":{"name":"Combustion Engines","volume":"51 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental study of materials for the filtration of the intake air of the internal combustion engine of a motor vehicle\",\"authors\":\"T. Dziubak\",\"doi\":\"10.19206/ce-178374\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Experimental evaluation of the properties of filter materials in the selection of material for filtration of inlet air of internal combustion engines was carried out. The filtration characteristics were determined: filtration efficiency and accuracy, as well as flow resistance depending on the dust mass load. Filter materials based on cellulose, polyester, microfiber glass, and cotton and polyester nonwoven beds were studied. Two filter beds consisting of three base filter materials were designed: composite K1 (polyester-microglass-cellulose) and composite K2 (cellulose-microglass-cellulose), and their characteristics were performed. The air filtration quality factor was used to analyze the test results. The coefficient of filtration efficiency was defined, showing the effect of the preliminary stage on the total time of the filtration process. It was shown that the K1 composite has high (dpmax = 1.5÷3 µm) filtration accuracy, high initial filtration efficiency (99.8%), which shortens the pre-stage, and extends to 96-98% the duration of the main stage of the filtration process. The K1 composite obtained more than twice the mass loading of dust (kdK1 = 148,9 g/m2), which will allow the vehicle's mileage to be extended.\",\"PeriodicalId\":34258,\"journal\":{\"name\":\"Combustion Engines\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combustion Engines\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19206/ce-178374\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combustion Engines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19206/ce-178374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在选择内燃机进气过滤材料时,对过滤材料的特性进行了实验评估。确定了过滤特性:过滤效率和精度,以及取决于粉尘质量负荷的流动阻力。研究了基于纤维素、聚酯、超细玻璃纤维以及棉和聚酯无纺布床的过滤材料。设计了由三种基础过滤材料组成的两个滤床:复合 K1(聚酯-微玻纤-纤维素)和复合 K2(纤维素-微玻纤-纤维素),并研究了它们的特性。空气过滤质量系数用于分析测试结果。定义了过滤效率系数,以显示初效阶段对过滤过程总时间的影响。结果表明,K1 复合材料的过滤精度高(dpmax = 1.5÷3 µm),初始过滤效率高(99.8%),从而缩短了预过滤阶段,并将过滤过程主要阶段的持续时间延长至 96-98%。K1 复合材料可获得两倍以上的粉尘质量负荷(kdK1 = 148.9 克/平方米),从而延长车辆的行驶里程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental study of materials for the filtration of the intake air of the internal combustion engine of a motor vehicle
Experimental evaluation of the properties of filter materials in the selection of material for filtration of inlet air of internal combustion engines was carried out. The filtration characteristics were determined: filtration efficiency and accuracy, as well as flow resistance depending on the dust mass load. Filter materials based on cellulose, polyester, microfiber glass, and cotton and polyester nonwoven beds were studied. Two filter beds consisting of three base filter materials were designed: composite K1 (polyester-microglass-cellulose) and composite K2 (cellulose-microglass-cellulose), and their characteristics were performed. The air filtration quality factor was used to analyze the test results. The coefficient of filtration efficiency was defined, showing the effect of the preliminary stage on the total time of the filtration process. It was shown that the K1 composite has high (dpmax = 1.5÷3 µm) filtration accuracy, high initial filtration efficiency (99.8%), which shortens the pre-stage, and extends to 96-98% the duration of the main stage of the filtration process. The K1 composite obtained more than twice the mass loading of dust (kdK1 = 148,9 g/m2), which will allow the vehicle's mileage to be extended.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
30
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信