{"title":"微弧氧化后 AZ31 镁合金上的环氧树脂/多壁碳纳米管导电涂层研究","authors":"C. Zhang, C. Wang, B. Jiang, R. Song","doi":"10.1142/s0218625x24500811","DOIUrl":null,"url":null,"abstract":"After micro-arc oxidation, the surface properties of AZ31 magnesium alloy have been improved. However, micro-arc oxidation treatment leads to high insulation, which limits its application in electronic devices. To increase conductivity, a conductive coating was developed by adding multi-walled carbon nanotubes (MWCNTs) to the epoxy resin. The microstructure and performance of the coating were tested by SEM, thermogravimetric analyzer, four-probe conductivity meter, high-temperature friction and wear tester, and electrochemical workstation. The results indicate that the optimal conductivity with a resistivity of 303[Formula: see text][Formula: see text]m is obtained when the MWCNT content is at 4[Formula: see text]wt%. In addition, MWCNTs are filled with a network structure of epoxy resin, which increases the density of the coating and enhances their wear and corrosion resistance.","PeriodicalId":509359,"journal":{"name":"Surface Review and Letters","volume":"9 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"STUDY ON EPOXY RESIN/MULTI-WALLED CARBON NANOTUBES CONDUCTIVE COATING ON AZ31 MAGNESIUM ALLOY AFTER MICRO-ARC OXIDATION\",\"authors\":\"C. Zhang, C. Wang, B. Jiang, R. Song\",\"doi\":\"10.1142/s0218625x24500811\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"After micro-arc oxidation, the surface properties of AZ31 magnesium alloy have been improved. However, micro-arc oxidation treatment leads to high insulation, which limits its application in electronic devices. To increase conductivity, a conductive coating was developed by adding multi-walled carbon nanotubes (MWCNTs) to the epoxy resin. The microstructure and performance of the coating were tested by SEM, thermogravimetric analyzer, four-probe conductivity meter, high-temperature friction and wear tester, and electrochemical workstation. The results indicate that the optimal conductivity with a resistivity of 303[Formula: see text][Formula: see text]m is obtained when the MWCNT content is at 4[Formula: see text]wt%. In addition, MWCNTs are filled with a network structure of epoxy resin, which increases the density of the coating and enhances their wear and corrosion resistance.\",\"PeriodicalId\":509359,\"journal\":{\"name\":\"Surface Review and Letters\",\"volume\":\"9 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface Review and Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218625x24500811\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Review and Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218625x24500811","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
STUDY ON EPOXY RESIN/MULTI-WALLED CARBON NANOTUBES CONDUCTIVE COATING ON AZ31 MAGNESIUM ALLOY AFTER MICRO-ARC OXIDATION
After micro-arc oxidation, the surface properties of AZ31 magnesium alloy have been improved. However, micro-arc oxidation treatment leads to high insulation, which limits its application in electronic devices. To increase conductivity, a conductive coating was developed by adding multi-walled carbon nanotubes (MWCNTs) to the epoxy resin. The microstructure and performance of the coating were tested by SEM, thermogravimetric analyzer, four-probe conductivity meter, high-temperature friction and wear tester, and electrochemical workstation. The results indicate that the optimal conductivity with a resistivity of 303[Formula: see text][Formula: see text]m is obtained when the MWCNT content is at 4[Formula: see text]wt%. In addition, MWCNTs are filled with a network structure of epoxy resin, which increases the density of the coating and enhances their wear and corrosion resistance.