{"title":"提高散热性能的微通道散热器比较分析","authors":"Dhay Abd Al Hasan Jawad, S. Ahmed","doi":"10.1556/606.2023.00989","DOIUrl":null,"url":null,"abstract":"This study evaluated the thermal performance of side divergence and uniform micro-channel heat sinks by comparing and contrasting them. Heat transfer and fluid flow characteristics in these micro-channel configurations were studied using computational fluid dynamics simulations employing ANSYS Fluent 2017 code for this purpose. Laminar flow through micro-channels with a Reynolds number of 207 was the subject of the investigation. The goal is to determine how side divergence affects heat dissipation efficiency concerning traditional uniform micro-channels. The results showed that the best divergence ratio is 1.5 that achieved the highest performance. The study also revealed that side divergence micro-channel heat sinks can achieve thermal performance up to 14% higher than uniform micro-channel heat sinks.","PeriodicalId":35003,"journal":{"name":"Pollack Periodica","volume":"43 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative analysis of microchannel heat sinks for thermal performance enhancement\",\"authors\":\"Dhay Abd Al Hasan Jawad, S. Ahmed\",\"doi\":\"10.1556/606.2023.00989\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study evaluated the thermal performance of side divergence and uniform micro-channel heat sinks by comparing and contrasting them. Heat transfer and fluid flow characteristics in these micro-channel configurations were studied using computational fluid dynamics simulations employing ANSYS Fluent 2017 code for this purpose. Laminar flow through micro-channels with a Reynolds number of 207 was the subject of the investigation. The goal is to determine how side divergence affects heat dissipation efficiency concerning traditional uniform micro-channels. The results showed that the best divergence ratio is 1.5 that achieved the highest performance. The study also revealed that side divergence micro-channel heat sinks can achieve thermal performance up to 14% higher than uniform micro-channel heat sinks.\",\"PeriodicalId\":35003,\"journal\":{\"name\":\"Pollack Periodica\",\"volume\":\"43 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pollack Periodica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1556/606.2023.00989\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pollack Periodica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1556/606.2023.00989","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Comparative analysis of microchannel heat sinks for thermal performance enhancement
This study evaluated the thermal performance of side divergence and uniform micro-channel heat sinks by comparing and contrasting them. Heat transfer and fluid flow characteristics in these micro-channel configurations were studied using computational fluid dynamics simulations employing ANSYS Fluent 2017 code for this purpose. Laminar flow through micro-channels with a Reynolds number of 207 was the subject of the investigation. The goal is to determine how side divergence affects heat dissipation efficiency concerning traditional uniform micro-channels. The results showed that the best divergence ratio is 1.5 that achieved the highest performance. The study also revealed that side divergence micro-channel heat sinks can achieve thermal performance up to 14% higher than uniform micro-channel heat sinks.
期刊介绍:
Pollack Periodica is an interdisciplinary, peer-reviewed journal that provides an international forum for the presentation, discussion and dissemination of the latest advances and developments in engineering and informatics. Pollack Periodica invites papers reporting new research and applications from a wide range of discipline, including civil, mechanical, electrical, environmental, earthquake, material and information engineering. The journal aims at reaching a wider audience, not only researchers, but also those likely to be most affected by research results, for example designers, fabricators, specialists, developers, computer scientists managers in academic, governmental and industrial communities.