粗糙圆柱形颗粒阵列上的流体流动数值研究:多孔介质流分析

Pooja Thakur, Shruti Gautam, Aruna Thakur
{"title":"粗糙圆柱形颗粒阵列上的流体流动数值研究:多孔介质流分析","authors":"Pooja Thakur, Shruti Gautam, Aruna Thakur","doi":"10.1115/1.4064762","DOIUrl":null,"url":null,"abstract":"\n The objective of the study is to thoroughly analyze the flow and heat transfer of Bingham plastic fluids through an array of uniformly gapped rough surface cylinders embedded between two confined boundaries. Radial notches are used as the surface roughness in the model, evenly distributed. Due to the formation of front vortices in uniformly gapped cylinders, a negative pressure gradient is developed. The results of the numerical simulation analysis have shown that, when compared to the averaged Nusselt number, roughness has a minimal effect on the drag coefficient and pressure drop. As the degree of roughness increases, the size of the vortices decreases, resulting in a drop in heat transfer. Moreover, the analysis of each column shows that the first column array of cylinders has a higher total drag coefficient and average Nusselt number.","PeriodicalId":504378,"journal":{"name":"Journal of Fluids Engineering","volume":"128 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Study of the Fluid Flow Over the Array of Rough Cylindrical Particles: An Analysis of Porous Media Flow\",\"authors\":\"Pooja Thakur, Shruti Gautam, Aruna Thakur\",\"doi\":\"10.1115/1.4064762\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The objective of the study is to thoroughly analyze the flow and heat transfer of Bingham plastic fluids through an array of uniformly gapped rough surface cylinders embedded between two confined boundaries. Radial notches are used as the surface roughness in the model, evenly distributed. Due to the formation of front vortices in uniformly gapped cylinders, a negative pressure gradient is developed. The results of the numerical simulation analysis have shown that, when compared to the averaged Nusselt number, roughness has a minimal effect on the drag coefficient and pressure drop. As the degree of roughness increases, the size of the vortices decreases, resulting in a drop in heat transfer. Moreover, the analysis of each column shows that the first column array of cylinders has a higher total drag coefficient and average Nusselt number.\",\"PeriodicalId\":504378,\"journal\":{\"name\":\"Journal of Fluids Engineering\",\"volume\":\"128 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluids Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4064762\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluids Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4064762","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究的目的是全面分析宾汉塑性流体通过嵌入两个封闭边界之间的均匀间隙粗糙表面圆柱体阵列时的流动和传热情况。模型中使用了均匀分布的径向缺口作为表面粗糙度。由于在均匀间隙圆柱体中形成了前旋涡,因此产生了负压梯度。数值模拟分析结果表明,与平均努塞尔特数相比,粗糙度对阻力系数和压降的影响很小。随着粗糙度的增加,漩涡的大小减小,导致传热下降。此外,对每个圆柱的分析表明,第一列圆柱阵列的总阻力系数和平均努塞尔特数较高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical Study of the Fluid Flow Over the Array of Rough Cylindrical Particles: An Analysis of Porous Media Flow
The objective of the study is to thoroughly analyze the flow and heat transfer of Bingham plastic fluids through an array of uniformly gapped rough surface cylinders embedded between two confined boundaries. Radial notches are used as the surface roughness in the model, evenly distributed. Due to the formation of front vortices in uniformly gapped cylinders, a negative pressure gradient is developed. The results of the numerical simulation analysis have shown that, when compared to the averaged Nusselt number, roughness has a minimal effect on the drag coefficient and pressure drop. As the degree of roughness increases, the size of the vortices decreases, resulting in a drop in heat transfer. Moreover, the analysis of each column shows that the first column array of cylinders has a higher total drag coefficient and average Nusselt number.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信