{"title":"豆类种植中的人工智能增强型精准灌溉:优化用水效率","authors":"Tae Hoon Kim, Ahmad Alzubi","doi":"10.18805/lrf-791","DOIUrl":null,"url":null,"abstract":"Background: Cultivating legumes, a significant facet of sustainable agriculture, consistently faces challenges in managing water resources. The present study aimed to explore the integration of artificial intelligence (AI) to enhance water use efficiency in legume farming with the potential to reduce the water shortage problem. In this work, Peas as a specific legume is chosen. In Uttar Pradesh, India, precision irrigation was combined with artificial intelligence (AI) to maximize crop productivity, support sustainable farming methods and solve the problem of water constraints. AI-enabled precision irrigation offers significant advantages like precise allocation of water resources, enhanced crop yield, optimal water consumption, cost-effectiveness and a reduction of greenhouse gas emissions. Methods: By employing a systematic methodology, including data collection, AI modeling and thorough data analysis, this work reveals useful findings. The comparison between traditional and AI-driven precision irrigation shows that artificial intelligence delivers enhanced real-time decision-making capabilities. It optimally tailors’ irrigation schedules and water distribution, considering weather, soil conditions and crop requirements. The achieved water savings, combined with improved legume yields, have significant implications for agricultural techniques with limited resources. Result: Because of a changing climate and decreasing water supplies, farmers, legislators and other stakeholders can greatly benefit from the suggestions that were obtained from the findings, which provide practical direction. This research serves as a milestone in the integration of AI for precision agriculture, creating a way for a more sustainable and productive future in legume farming.","PeriodicalId":17998,"journal":{"name":"LEGUME RESEARCH - AN INTERNATIONAL JOURNAL","volume":"62 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AI-Enhanced Precision Irrigation in Legume Farming: Optimizing Water Use Efficiency\",\"authors\":\"Tae Hoon Kim, Ahmad Alzubi\",\"doi\":\"10.18805/lrf-791\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Cultivating legumes, a significant facet of sustainable agriculture, consistently faces challenges in managing water resources. The present study aimed to explore the integration of artificial intelligence (AI) to enhance water use efficiency in legume farming with the potential to reduce the water shortage problem. In this work, Peas as a specific legume is chosen. In Uttar Pradesh, India, precision irrigation was combined with artificial intelligence (AI) to maximize crop productivity, support sustainable farming methods and solve the problem of water constraints. AI-enabled precision irrigation offers significant advantages like precise allocation of water resources, enhanced crop yield, optimal water consumption, cost-effectiveness and a reduction of greenhouse gas emissions. Methods: By employing a systematic methodology, including data collection, AI modeling and thorough data analysis, this work reveals useful findings. The comparison between traditional and AI-driven precision irrigation shows that artificial intelligence delivers enhanced real-time decision-making capabilities. It optimally tailors’ irrigation schedules and water distribution, considering weather, soil conditions and crop requirements. The achieved water savings, combined with improved legume yields, have significant implications for agricultural techniques with limited resources. Result: Because of a changing climate and decreasing water supplies, farmers, legislators and other stakeholders can greatly benefit from the suggestions that were obtained from the findings, which provide practical direction. This research serves as a milestone in the integration of AI for precision agriculture, creating a way for a more sustainable and productive future in legume farming.\",\"PeriodicalId\":17998,\"journal\":{\"name\":\"LEGUME RESEARCH - AN INTERNATIONAL JOURNAL\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"LEGUME RESEARCH - AN INTERNATIONAL JOURNAL\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18805/lrf-791\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"LEGUME RESEARCH - AN INTERNATIONAL JOURNAL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18805/lrf-791","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
AI-Enhanced Precision Irrigation in Legume Farming: Optimizing Water Use Efficiency
Background: Cultivating legumes, a significant facet of sustainable agriculture, consistently faces challenges in managing water resources. The present study aimed to explore the integration of artificial intelligence (AI) to enhance water use efficiency in legume farming with the potential to reduce the water shortage problem. In this work, Peas as a specific legume is chosen. In Uttar Pradesh, India, precision irrigation was combined with artificial intelligence (AI) to maximize crop productivity, support sustainable farming methods and solve the problem of water constraints. AI-enabled precision irrigation offers significant advantages like precise allocation of water resources, enhanced crop yield, optimal water consumption, cost-effectiveness and a reduction of greenhouse gas emissions. Methods: By employing a systematic methodology, including data collection, AI modeling and thorough data analysis, this work reveals useful findings. The comparison between traditional and AI-driven precision irrigation shows that artificial intelligence delivers enhanced real-time decision-making capabilities. It optimally tailors’ irrigation schedules and water distribution, considering weather, soil conditions and crop requirements. The achieved water savings, combined with improved legume yields, have significant implications for agricultural techniques with limited resources. Result: Because of a changing climate and decreasing water supplies, farmers, legislators and other stakeholders can greatly benefit from the suggestions that were obtained from the findings, which provide practical direction. This research serves as a milestone in the integration of AI for precision agriculture, creating a way for a more sustainable and productive future in legume farming.