特殊集合𝒮上图形的谱分析

A. Rao, Sandeep Kumar, Deepa Sinha
{"title":"特殊集合𝒮上图形的谱分析","authors":"A. Rao, Sandeep Kumar, Deepa Sinha","doi":"10.1142/s1793830924500071","DOIUrl":null,"url":null,"abstract":"Let [Formula: see text] be the ring of integer modulo [Formula: see text] with two binary operators, addition [Formula: see text] and multiplication [Formula: see text], where [Formula: see text] is a positive integer. The special set [Formula: see text] is defined as [Formula: see text]. Our purpose in the present paper is to propose a new family of interconnection networks that are Cayley graphs on this special set [Formula: see text] and denote it by [Formula: see text]. In this paper, we define a relationship between [Formula: see text] and [Formula: see text], [Formula: see text] is a derived graph from [Formula: see text] by removing [Formula: see text] edges, where [Formula: see text] is a known fixed value. We also give the spectrum of absorption Cayley graph, unitary addition Cayley graph, and [Formula: see text]. We also provide values of [Formula: see text] for which the graph [Formula: see text] is hyperenergetic and discuss the structural properties of this graph, such as planarity and connectedness.","PeriodicalId":504044,"journal":{"name":"Discrete Mathematics, Algorithms and Applications","volume":"61 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectral analysis of a graph on the special set 𝒮\",\"authors\":\"A. Rao, Sandeep Kumar, Deepa Sinha\",\"doi\":\"10.1142/s1793830924500071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let [Formula: see text] be the ring of integer modulo [Formula: see text] with two binary operators, addition [Formula: see text] and multiplication [Formula: see text], where [Formula: see text] is a positive integer. The special set [Formula: see text] is defined as [Formula: see text]. Our purpose in the present paper is to propose a new family of interconnection networks that are Cayley graphs on this special set [Formula: see text] and denote it by [Formula: see text]. In this paper, we define a relationship between [Formula: see text] and [Formula: see text], [Formula: see text] is a derived graph from [Formula: see text] by removing [Formula: see text] edges, where [Formula: see text] is a known fixed value. We also give the spectrum of absorption Cayley graph, unitary addition Cayley graph, and [Formula: see text]. We also provide values of [Formula: see text] for which the graph [Formula: see text] is hyperenergetic and discuss the structural properties of this graph, such as planarity and connectedness.\",\"PeriodicalId\":504044,\"journal\":{\"name\":\"Discrete Mathematics, Algorithms and Applications\",\"volume\":\"61 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics, Algorithms and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793830924500071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics, Algorithms and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1793830924500071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设[式:见正文]是整数模环[式:见正文],有加法[式:见正文]和乘法[式:见正文]两个二元运算符,其中[式:见正文]是正整数。特殊集合[式:见正文]定义为[式:见正文]。本文的目的是提出一种新的互联网络族,它们是这个特殊集合 [公式:见正文] 上的 Cayley 图,并用 [公式:见正文] 表示。在本文中,我们定义了[式:见文]和[式:见文]之间的关系,[式:见文]是[式:见文]的派生图,通过删除[式:见文]的边,其中[式:见文]是一个已知的固定值。我们还给出了吸收 Cayley 图、单元加法 Cayley 图和[公式:参见文本]的谱。我们还提供了图[公式:见正文]是超能级的[公式:见正文]值,并讨论了该图的结构特性,如平面性和连通性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spectral analysis of a graph on the special set 𝒮
Let [Formula: see text] be the ring of integer modulo [Formula: see text] with two binary operators, addition [Formula: see text] and multiplication [Formula: see text], where [Formula: see text] is a positive integer. The special set [Formula: see text] is defined as [Formula: see text]. Our purpose in the present paper is to propose a new family of interconnection networks that are Cayley graphs on this special set [Formula: see text] and denote it by [Formula: see text]. In this paper, we define a relationship between [Formula: see text] and [Formula: see text], [Formula: see text] is a derived graph from [Formula: see text] by removing [Formula: see text] edges, where [Formula: see text] is a known fixed value. We also give the spectrum of absorption Cayley graph, unitary addition Cayley graph, and [Formula: see text]. We also provide values of [Formula: see text] for which the graph [Formula: see text] is hyperenergetic and discuss the structural properties of this graph, such as planarity and connectedness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信