S. Syrotyuk, A.Y. Nakonechnyi, Y. Klysko, H.I. Vlakh-Vyhrynovska, Z.E. Veres
{"title":"受 Mn 杂质、Zn 空位和压力影响的 ZnSeS 固溶体的电子和磁性能","authors":"S. Syrotyuk, A.Y. Nakonechnyi, Y. Klysko, H.I. Vlakh-Vyhrynovska, Z.E. Veres","doi":"10.15330/pcss.25.1.65-72","DOIUrl":null,"url":null,"abstract":"The spin-polarized electronic energy spectra of the ZnSeS solid solution were obtained based on calculations for the supercell, which contains 64 atoms. At the first stage, the properties of the material based on the Mn:ZnSeS supercell, in which Mn replaces the Zn atom, were calculated. The calculation results reveal that the material is a semiconductor for both spin orientations. The second stage is based on the simultaneous presence of a Mn impurity and a cation vacancy. Comparing the results of the first two stages allows us to reveal significant changes in the electronic energy structure caused by the cation vacancy. The material with a vacancy exhibits metallic properties for both spin orientations. The third stage is implemented for the supercell without a vacancy, but under the action of hydrostatic pressure. The material exhibits semiconducting properties for both values of the spin moment. At the fourth stage, the Mn:ZnSeS supercell with a vacancy and under pressure is considered. In the presence of pressure and a VZn vacancy, the ZnMnSeS material exhibits metallic properties for both spin orientations. A material with a vacancy and under pressure can be characterized as a magnetic metal.","PeriodicalId":509433,"journal":{"name":"Physics and Chemistry of Solid State","volume":"433 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electronic and magnetic properties of ZnSeS solid solution modified by Mn impurity, Zn vacancy and pressure\",\"authors\":\"S. Syrotyuk, A.Y. Nakonechnyi, Y. Klysko, H.I. Vlakh-Vyhrynovska, Z.E. Veres\",\"doi\":\"10.15330/pcss.25.1.65-72\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The spin-polarized electronic energy spectra of the ZnSeS solid solution were obtained based on calculations for the supercell, which contains 64 atoms. At the first stage, the properties of the material based on the Mn:ZnSeS supercell, in which Mn replaces the Zn atom, were calculated. The calculation results reveal that the material is a semiconductor for both spin orientations. The second stage is based on the simultaneous presence of a Mn impurity and a cation vacancy. Comparing the results of the first two stages allows us to reveal significant changes in the electronic energy structure caused by the cation vacancy. The material with a vacancy exhibits metallic properties for both spin orientations. The third stage is implemented for the supercell without a vacancy, but under the action of hydrostatic pressure. The material exhibits semiconducting properties for both values of the spin moment. At the fourth stage, the Mn:ZnSeS supercell with a vacancy and under pressure is considered. In the presence of pressure and a VZn vacancy, the ZnMnSeS material exhibits metallic properties for both spin orientations. A material with a vacancy and under pressure can be characterized as a magnetic metal.\",\"PeriodicalId\":509433,\"journal\":{\"name\":\"Physics and Chemistry of Solid State\",\"volume\":\"433 12\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics and Chemistry of Solid State\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15330/pcss.25.1.65-72\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Chemistry of Solid State","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15330/pcss.25.1.65-72","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Electronic and magnetic properties of ZnSeS solid solution modified by Mn impurity, Zn vacancy and pressure
The spin-polarized electronic energy spectra of the ZnSeS solid solution were obtained based on calculations for the supercell, which contains 64 atoms. At the first stage, the properties of the material based on the Mn:ZnSeS supercell, in which Mn replaces the Zn atom, were calculated. The calculation results reveal that the material is a semiconductor for both spin orientations. The second stage is based on the simultaneous presence of a Mn impurity and a cation vacancy. Comparing the results of the first two stages allows us to reveal significant changes in the electronic energy structure caused by the cation vacancy. The material with a vacancy exhibits metallic properties for both spin orientations. The third stage is implemented for the supercell without a vacancy, but under the action of hydrostatic pressure. The material exhibits semiconducting properties for both values of the spin moment. At the fourth stage, the Mn:ZnSeS supercell with a vacancy and under pressure is considered. In the presence of pressure and a VZn vacancy, the ZnMnSeS material exhibits metallic properties for both spin orientations. A material with a vacancy and under pressure can be characterized as a magnetic metal.