使用天真贝叶斯方法将 PSO 应用于加密货币评论的情感分析

Nita Merlina, Ade Chandra, Nissa Almira Mayangky
{"title":"使用天真贝叶斯方法将 PSO 应用于加密货币评论的情感分析","authors":"Nita Merlina, Ade Chandra, Nissa Almira Mayangky","doi":"10.33480/inti.v18i2.4982","DOIUrl":null,"url":null,"abstract":"In the digital age emerging currencies using digital technology called currency crypto money. Many people use cryptocurrencies to invest. This triggered the sentiment in society on social media twitter, there are positive opinions and there are negative opinions. The purpose of this study is to determine the public sentiment regarding the review of crypto currency and then classify it into two sentiments, namely positive and negative sentiments. The classifier method used is Naïve Bayes, Naïve Bayes is a good classifier method but has shortcomings in the selection of features therefore Particle Swarm Optimization (PSO) is applied as a feature selection in order to improve the accuracy value. After conducted experiments using Naïve Bayes method, obtain accuracy value of 66% with AUC 0.482 and after Applied Particle Swarm Optimization (PSO) as feature selection in Naïve Bayes obtain accuracy value of 85% with AUC 0.716 has increased accuracy .","PeriodicalId":197142,"journal":{"name":"INTI Nusa Mandiri","volume":"396 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PENERAPAN PSO UNTUK SENTIMEN ANALISIS PADA REVIEW MATA UANG KRIPTO MENGGUNAKAN METODE NAÏVE BAYES\",\"authors\":\"Nita Merlina, Ade Chandra, Nissa Almira Mayangky\",\"doi\":\"10.33480/inti.v18i2.4982\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the digital age emerging currencies using digital technology called currency crypto money. Many people use cryptocurrencies to invest. This triggered the sentiment in society on social media twitter, there are positive opinions and there are negative opinions. The purpose of this study is to determine the public sentiment regarding the review of crypto currency and then classify it into two sentiments, namely positive and negative sentiments. The classifier method used is Naïve Bayes, Naïve Bayes is a good classifier method but has shortcomings in the selection of features therefore Particle Swarm Optimization (PSO) is applied as a feature selection in order to improve the accuracy value. After conducted experiments using Naïve Bayes method, obtain accuracy value of 66% with AUC 0.482 and after Applied Particle Swarm Optimization (PSO) as feature selection in Naïve Bayes obtain accuracy value of 85% with AUC 0.716 has increased accuracy .\",\"PeriodicalId\":197142,\"journal\":{\"name\":\"INTI Nusa Mandiri\",\"volume\":\"396 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"INTI Nusa Mandiri\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33480/inti.v18i2.4982\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"INTI Nusa Mandiri","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33480/inti.v18i2.4982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在数字时代,使用数字技术的新兴货币被称为加密货币。许多人使用加密货币进行投资。这引发了社交媒体 twitter 上的社会情绪,有正面意见,也有负面意见。本研究的目的是确定公众对加密货币评论的情绪,然后将其分为两种情绪,即积极情绪和消极情绪。使用的分类方法是奈夫贝叶斯,奈夫贝叶斯是一种很好的分类方法,但在特征选择方面存在缺陷,因此采用了粒子群优化(PSO)作为特征选择,以提高准确率。使用 Naïve Bayes 方法进行实验后,准确率为 66%,AUC 为 0.482,而在 Naïve Bayes 中应用粒子群优化(PSO)作为特征选择后,准确率为 85%,AUC 为 0.716,准确率有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PENERAPAN PSO UNTUK SENTIMEN ANALISIS PADA REVIEW MATA UANG KRIPTO MENGGUNAKAN METODE NAÏVE BAYES
In the digital age emerging currencies using digital technology called currency crypto money. Many people use cryptocurrencies to invest. This triggered the sentiment in society on social media twitter, there are positive opinions and there are negative opinions. The purpose of this study is to determine the public sentiment regarding the review of crypto currency and then classify it into two sentiments, namely positive and negative sentiments. The classifier method used is Naïve Bayes, Naïve Bayes is a good classifier method but has shortcomings in the selection of features therefore Particle Swarm Optimization (PSO) is applied as a feature selection in order to improve the accuracy value. After conducted experiments using Naïve Bayes method, obtain accuracy value of 66% with AUC 0.482 and after Applied Particle Swarm Optimization (PSO) as feature selection in Naïve Bayes obtain accuracy value of 85% with AUC 0.716 has increased accuracy .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信