{"title":"使用天真贝叶斯方法将 PSO 应用于加密货币评论的情感分析","authors":"Nita Merlina, Ade Chandra, Nissa Almira Mayangky","doi":"10.33480/inti.v18i2.4982","DOIUrl":null,"url":null,"abstract":"In the digital age emerging currencies using digital technology called currency crypto money. Many people use cryptocurrencies to invest. This triggered the sentiment in society on social media twitter, there are positive opinions and there are negative opinions. The purpose of this study is to determine the public sentiment regarding the review of crypto currency and then classify it into two sentiments, namely positive and negative sentiments. The classifier method used is Naïve Bayes, Naïve Bayes is a good classifier method but has shortcomings in the selection of features therefore Particle Swarm Optimization (PSO) is applied as a feature selection in order to improve the accuracy value. After conducted experiments using Naïve Bayes method, obtain accuracy value of 66% with AUC 0.482 and after Applied Particle Swarm Optimization (PSO) as feature selection in Naïve Bayes obtain accuracy value of 85% with AUC 0.716 has increased accuracy .","PeriodicalId":197142,"journal":{"name":"INTI Nusa Mandiri","volume":"396 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PENERAPAN PSO UNTUK SENTIMEN ANALISIS PADA REVIEW MATA UANG KRIPTO MENGGUNAKAN METODE NAÏVE BAYES\",\"authors\":\"Nita Merlina, Ade Chandra, Nissa Almira Mayangky\",\"doi\":\"10.33480/inti.v18i2.4982\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the digital age emerging currencies using digital technology called currency crypto money. Many people use cryptocurrencies to invest. This triggered the sentiment in society on social media twitter, there are positive opinions and there are negative opinions. The purpose of this study is to determine the public sentiment regarding the review of crypto currency and then classify it into two sentiments, namely positive and negative sentiments. The classifier method used is Naïve Bayes, Naïve Bayes is a good classifier method but has shortcomings in the selection of features therefore Particle Swarm Optimization (PSO) is applied as a feature selection in order to improve the accuracy value. After conducted experiments using Naïve Bayes method, obtain accuracy value of 66% with AUC 0.482 and after Applied Particle Swarm Optimization (PSO) as feature selection in Naïve Bayes obtain accuracy value of 85% with AUC 0.716 has increased accuracy .\",\"PeriodicalId\":197142,\"journal\":{\"name\":\"INTI Nusa Mandiri\",\"volume\":\"396 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"INTI Nusa Mandiri\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33480/inti.v18i2.4982\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"INTI Nusa Mandiri","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33480/inti.v18i2.4982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
PENERAPAN PSO UNTUK SENTIMEN ANALISIS PADA REVIEW MATA UANG KRIPTO MENGGUNAKAN METODE NAÏVE BAYES
In the digital age emerging currencies using digital technology called currency crypto money. Many people use cryptocurrencies to invest. This triggered the sentiment in society on social media twitter, there are positive opinions and there are negative opinions. The purpose of this study is to determine the public sentiment regarding the review of crypto currency and then classify it into two sentiments, namely positive and negative sentiments. The classifier method used is Naïve Bayes, Naïve Bayes is a good classifier method but has shortcomings in the selection of features therefore Particle Swarm Optimization (PSO) is applied as a feature selection in order to improve the accuracy value. After conducted experiments using Naïve Bayes method, obtain accuracy value of 66% with AUC 0.482 and after Applied Particle Swarm Optimization (PSO) as feature selection in Naïve Bayes obtain accuracy value of 85% with AUC 0.716 has increased accuracy .