丛枝菌根真菌促进土壤健康的潜力

IF 5.2 2区 农林科学 Q1 SOIL SCIENCE
Junling ZHANG , Ruotong ZHAO , Xia LI , Jiangzhou ZHANG
{"title":"丛枝菌根真菌促进土壤健康的潜力","authors":"Junling ZHANG ,&nbsp;Ruotong ZHAO ,&nbsp;Xia LI ,&nbsp;Jiangzhou ZHANG","doi":"10.1016/j.pedsph.2024.02.002","DOIUrl":null,"url":null,"abstract":"<div><p>Soil health is an important component of “One Health”. Soils provide habitat to diverse and abundant organisms. Understanding microbial diversity and functions is essential for building healthy soils towards sustainable agriculture. Arbuscular mycorrhizal fungi (AMF) form potentially symbiotic associations with approximately 80% of land plant species that are well recognized for carbon flux and nutrient cycling. In addition to disentangling the signaling pathways and regulatory mechanisms between the two partners, recent advances in hyphosphere research highlight some emerging roles of AMF and associated microbes in the delivery of soil functions. This paper reviews the contribution of AMF to soil health in agroecosystems, with a major focus on recent progress in the contribution of hyphosphere microbiome to nutrient cycling, carbon sequestration, and soil aggregation. The hyphosphere microbiome and fungal stimulants open avenues for developing new fertilizer formulas to promote AMF benefits. In practice, developing AMF-friendly management strategies will have long-term positive effects on sustainable agriculture aiming at simultaneously providing food security, increasing resource use efficiency, and maintaining environment integrity.</p></div>","PeriodicalId":49709,"journal":{"name":"Pedosphere","volume":"34 2","pages":"Pages 279-288"},"PeriodicalIF":5.2000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Potential of arbuscular mycorrhizal fungi for soil health: A review\",\"authors\":\"Junling ZHANG ,&nbsp;Ruotong ZHAO ,&nbsp;Xia LI ,&nbsp;Jiangzhou ZHANG\",\"doi\":\"10.1016/j.pedsph.2024.02.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Soil health is an important component of “One Health”. Soils provide habitat to diverse and abundant organisms. Understanding microbial diversity and functions is essential for building healthy soils towards sustainable agriculture. Arbuscular mycorrhizal fungi (AMF) form potentially symbiotic associations with approximately 80% of land plant species that are well recognized for carbon flux and nutrient cycling. In addition to disentangling the signaling pathways and regulatory mechanisms between the two partners, recent advances in hyphosphere research highlight some emerging roles of AMF and associated microbes in the delivery of soil functions. This paper reviews the contribution of AMF to soil health in agroecosystems, with a major focus on recent progress in the contribution of hyphosphere microbiome to nutrient cycling, carbon sequestration, and soil aggregation. The hyphosphere microbiome and fungal stimulants open avenues for developing new fertilizer formulas to promote AMF benefits. In practice, developing AMF-friendly management strategies will have long-term positive effects on sustainable agriculture aiming at simultaneously providing food security, increasing resource use efficiency, and maintaining environment integrity.</p></div>\",\"PeriodicalId\":49709,\"journal\":{\"name\":\"Pedosphere\",\"volume\":\"34 2\",\"pages\":\"Pages 279-288\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pedosphere\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1002016024000080\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pedosphere","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1002016024000080","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

土壤健康是 "一体健康 "的重要组成部分。土壤为多样而丰富的生物提供了栖息地。了解微生物的多样性和功能对于建设健康土壤,实现可持续农业至关重要。丛枝菌根真菌(AMF)与大约 80% 的陆地植物物种形成潜在的共生关系,在碳通量和养分循环方面得到广泛认可。除了阐明这两个伙伴之间的信号传导途径和调控机制外,最近的下圈研究进展还强调了 AMF 和相关微生物在提供土壤功能方面的一些新作用。本文综述了AMF对农业生态系统中土壤健康的贡献,重点介绍了下圈微生物群对养分循环、碳固存和土壤团聚的贡献方面的最新进展。下圈微生物群和真菌刺激剂为开发新的肥料配方以促进 AMF 的益处开辟了道路。在实践中,制定对 AMF 有利的管理策略将对可持续农业产生长期的积极影响,从而同时实现粮食安全、提高资源利用效率和维护环境完整性的目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Potential of arbuscular mycorrhizal fungi for soil health: A review

Soil health is an important component of “One Health”. Soils provide habitat to diverse and abundant organisms. Understanding microbial diversity and functions is essential for building healthy soils towards sustainable agriculture. Arbuscular mycorrhizal fungi (AMF) form potentially symbiotic associations with approximately 80% of land plant species that are well recognized for carbon flux and nutrient cycling. In addition to disentangling the signaling pathways and regulatory mechanisms between the two partners, recent advances in hyphosphere research highlight some emerging roles of AMF and associated microbes in the delivery of soil functions. This paper reviews the contribution of AMF to soil health in agroecosystems, with a major focus on recent progress in the contribution of hyphosphere microbiome to nutrient cycling, carbon sequestration, and soil aggregation. The hyphosphere microbiome and fungal stimulants open avenues for developing new fertilizer formulas to promote AMF benefits. In practice, developing AMF-friendly management strategies will have long-term positive effects on sustainable agriculture aiming at simultaneously providing food security, increasing resource use efficiency, and maintaining environment integrity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pedosphere
Pedosphere 环境科学-土壤科学
CiteScore
11.70
自引率
1.80%
发文量
147
审稿时长
5.0 months
期刊介绍: PEDOSPHERE—a peer-reviewed international journal published bimonthly in English—welcomes submissions from scientists around the world under a broad scope of topics relevant to timely, high quality original research findings, especially up-to-date achievements and advances in the entire field of soil science studies dealing with environmental science, ecology, agriculture, bioscience, geoscience, forestry, etc. It publishes mainly original research articles as well as some reviews, mini reviews, short communications and special issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信