刚性基脚下包裹石柱沉降的分析解决方案

IF 4.7 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL
Jorge Castro, Jon Justo, Marina Miranda
{"title":"刚性基脚下包裹石柱沉降的分析解决方案","authors":"Jorge Castro,&nbsp;Jon Justo,&nbsp;Marina Miranda","doi":"10.1016/j.geotexmem.2024.01.001","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a new approximate solution to study the settlement of rigid footings resting on a soft soil improved with groups of encased stone columns. The solution development is fully analytical, but finite element analyses are used to verify the validity of some assumptions, such as a simplified geometric model, load distribution with depth and boundary conditions. Groups of encased stone columns are converted to equivalent single encased columns with the same cross-sectional area and the same ratio of encasement stiffness to column diameter. In this way, the problem becomes axially symmetric. Soft soil is assumed as linear elastic but plastic strains are considered in the column using the Mohr-Coulomb yield criterion and a non-associated flow rule with a constant dilatancy angle. Soil profile is divided into independent horizontal slices and equilibrium of stresses and compatibility of deformations are imposed in the vertical and horizontal directions. The solution is presented in a closed form and may be easily implemented in a spreadsheet. Comparisons of the proposed solution with numerical analyses show a good agreement for the whole range of common values, which confirms the validity of the solution and its hypotheses.</p></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0266114424000074/pdfft?md5=fdd46770e7e4291f964a87f6883b786b&pid=1-s2.0-S0266114424000074-main.pdf","citationCount":"0","resultStr":"{\"title\":\"An analytical solution for the settlement of encased stone columns beneath rigid footings\",\"authors\":\"Jorge Castro,&nbsp;Jon Justo,&nbsp;Marina Miranda\",\"doi\":\"10.1016/j.geotexmem.2024.01.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents a new approximate solution to study the settlement of rigid footings resting on a soft soil improved with groups of encased stone columns. The solution development is fully analytical, but finite element analyses are used to verify the validity of some assumptions, such as a simplified geometric model, load distribution with depth and boundary conditions. Groups of encased stone columns are converted to equivalent single encased columns with the same cross-sectional area and the same ratio of encasement stiffness to column diameter. In this way, the problem becomes axially symmetric. Soft soil is assumed as linear elastic but plastic strains are considered in the column using the Mohr-Coulomb yield criterion and a non-associated flow rule with a constant dilatancy angle. Soil profile is divided into independent horizontal slices and equilibrium of stresses and compatibility of deformations are imposed in the vertical and horizontal directions. The solution is presented in a closed form and may be easily implemented in a spreadsheet. Comparisons of the proposed solution with numerical analyses show a good agreement for the whole range of common values, which confirms the validity of the solution and its hypotheses.</p></div>\",\"PeriodicalId\":55096,\"journal\":{\"name\":\"Geotextiles and Geomembranes\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0266114424000074/pdfft?md5=fdd46770e7e4291f964a87f6883b786b&pid=1-s2.0-S0266114424000074-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geotextiles and Geomembranes\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0266114424000074\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geotextiles and Geomembranes","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266114424000074","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的近似解决方案,用于研究刚性基脚在软土上的沉降问题。解决方案的开发是完全分析性的,但使用了有限元分析来验证某些假设的有效性,如简化几何模型、随深度的荷载分布和边界条件。加密石柱群被转换为等效的单个加密石柱,具有相同的横截面积和相同的加密刚度与石柱直径比。这样,问题就变成了轴对称问题。软土被假定为线性弹性土,但使用莫尔-库仑屈服准则和具有恒定膨胀角的非关联流动规则考虑了柱中的塑性应变。土层剖面分为独立的水平切面,在垂直和水平方向上施加应力平衡和变形相容。解法以封闭形式呈现,可在电子表格中轻松实现。将所提出的解决方案与数值分析进行比较,结果表明,在整个常用值范围内,两者的一致性都很好,这证实了解决方案及其假设的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An analytical solution for the settlement of encased stone columns beneath rigid footings

This paper presents a new approximate solution to study the settlement of rigid footings resting on a soft soil improved with groups of encased stone columns. The solution development is fully analytical, but finite element analyses are used to verify the validity of some assumptions, such as a simplified geometric model, load distribution with depth and boundary conditions. Groups of encased stone columns are converted to equivalent single encased columns with the same cross-sectional area and the same ratio of encasement stiffness to column diameter. In this way, the problem becomes axially symmetric. Soft soil is assumed as linear elastic but plastic strains are considered in the column using the Mohr-Coulomb yield criterion and a non-associated flow rule with a constant dilatancy angle. Soil profile is divided into independent horizontal slices and equilibrium of stresses and compatibility of deformations are imposed in the vertical and horizontal directions. The solution is presented in a closed form and may be easily implemented in a spreadsheet. Comparisons of the proposed solution with numerical analyses show a good agreement for the whole range of common values, which confirms the validity of the solution and its hypotheses.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geotextiles and Geomembranes
Geotextiles and Geomembranes 地学-地球科学综合
CiteScore
9.50
自引率
21.20%
发文量
111
审稿时长
59 days
期刊介绍: The range of products and their applications has expanded rapidly over the last decade with geotextiles and geomembranes being specified world wide. This rapid growth is paralleled by a virtual explosion of technology. Current reference books and even manufacturers' sponsored publications tend to date very quickly and the need for a vehicle to bring together and discuss the growing body of technology now available has become evident. Geotextiles and Geomembranes fills this need and provides a forum for the dissemination of information amongst research workers, designers, users and manufacturers. By providing a growing fund of information the journal increases general awareness, prompts further research and assists in the establishment of international codes and regulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信