基于推荐算法的安全公文管理与智能信息检索系统研究

Liang Xing
{"title":"基于推荐算法的安全公文管理与智能信息检索系统研究","authors":"Liang Xing","doi":"10.1016/j.ijin.2024.02.003","DOIUrl":null,"url":null,"abstract":"<div><p>Currently, servers store information from different sources and file types, which are then retrieved via electronic Information Management Systems (e-IMS), with Smart serving as an effective prototype system. Association rule testing and collaborative filtering are implemented to develop a Recommendation System (RS) for Mobile Application-based Official Document Management and Information Retrieval Systems (MA-ODM-IRS) that utilizes data structure and propensities to develop unique recommendations for common users. Reliable and accurate RS, which employs Machine Learning (ML)-based sentiment analysis to classify recommendations and novel performance metrics for target Information Retrieval (IF) from evaluation DMSs, enhances user trust. A recovery method significantly reduces data loss hazards and improves test case procedures for searching in IR, testing Mean Reciprocal Rank (MRR), Average Precision (AP), and retrieved document percentages. It recommends the novel MA-ODM-IRS and discusses the three experimental system iterations. A 0.75% reciprocal rank is better achieved by optimizing the MABIRS discovery process for users. Identifying feasible ideas, designing and implementing testing processes employing UML tools, and assessing the system gave the participants 98.19% acceptance.</p></div>","PeriodicalId":100702,"journal":{"name":"International Journal of Intelligent Networks","volume":"5 ","pages":"Pages 110-119"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666603024000095/pdfft?md5=23f0a5a975d02ed8750b86940b30d6ab&pid=1-s2.0-S2666603024000095-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Secure Official Document Management and intelligent Information Retrieval System based on recommendation algorithm\",\"authors\":\"Liang Xing\",\"doi\":\"10.1016/j.ijin.2024.02.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Currently, servers store information from different sources and file types, which are then retrieved via electronic Information Management Systems (e-IMS), with Smart serving as an effective prototype system. Association rule testing and collaborative filtering are implemented to develop a Recommendation System (RS) for Mobile Application-based Official Document Management and Information Retrieval Systems (MA-ODM-IRS) that utilizes data structure and propensities to develop unique recommendations for common users. Reliable and accurate RS, which employs Machine Learning (ML)-based sentiment analysis to classify recommendations and novel performance metrics for target Information Retrieval (IF) from evaluation DMSs, enhances user trust. A recovery method significantly reduces data loss hazards and improves test case procedures for searching in IR, testing Mean Reciprocal Rank (MRR), Average Precision (AP), and retrieved document percentages. It recommends the novel MA-ODM-IRS and discusses the three experimental system iterations. A 0.75% reciprocal rank is better achieved by optimizing the MABIRS discovery process for users. Identifying feasible ideas, designing and implementing testing processes employing UML tools, and assessing the system gave the participants 98.19% acceptance.</p></div>\",\"PeriodicalId\":100702,\"journal\":{\"name\":\"International Journal of Intelligent Networks\",\"volume\":\"5 \",\"pages\":\"Pages 110-119\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666603024000095/pdfft?md5=23f0a5a975d02ed8750b86940b30d6ab&pid=1-s2.0-S2666603024000095-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Intelligent Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666603024000095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Networks","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666603024000095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前,服务器存储来自不同来源和文件类型的信息,然后通过电子信息管理系统(e-IMS)进行检索,Smart 就是一个有效的原型系统。通过关联规则测试和协同过滤,为基于移动应用程序的官方文件管理和信息检索系统(MA-ODM-IRS)开发了一个推荐系统(RS),该系统利用数据结构和倾向性为普通用户开发独特的推荐。可靠而准确的 RS 采用基于机器学习(ML)的情感分析来对推荐进行分类,并采用新颖的性能指标来评估 DMS 的目标信息检索(IF),从而提高了用户信任度。一种恢复方法大大降低了数据丢失的危险,并改进了在 IR 中搜索、测试平均互易等级(MRR)、平均精度(AP)和检索文档百分比的测试案例程序。报告推荐了新颖的 MA-ODM-IRS,并讨论了三个实验系统的迭代。通过优化 MABIRS 的用户发现流程,可以更好地实现 0.75% 的互易等级。确定可行的想法、利用 UML 工具设计和实施测试流程,以及对系统进行评估,使参与者的接受度达到 98.19%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Secure Official Document Management and intelligent Information Retrieval System based on recommendation algorithm

Currently, servers store information from different sources and file types, which are then retrieved via electronic Information Management Systems (e-IMS), with Smart serving as an effective prototype system. Association rule testing and collaborative filtering are implemented to develop a Recommendation System (RS) for Mobile Application-based Official Document Management and Information Retrieval Systems (MA-ODM-IRS) that utilizes data structure and propensities to develop unique recommendations for common users. Reliable and accurate RS, which employs Machine Learning (ML)-based sentiment analysis to classify recommendations and novel performance metrics for target Information Retrieval (IF) from evaluation DMSs, enhances user trust. A recovery method significantly reduces data loss hazards and improves test case procedures for searching in IR, testing Mean Reciprocal Rank (MRR), Average Precision (AP), and retrieved document percentages. It recommends the novel MA-ODM-IRS and discusses the three experimental system iterations. A 0.75% reciprocal rank is better achieved by optimizing the MABIRS discovery process for users. Identifying feasible ideas, designing and implementing testing processes employing UML tools, and assessing the system gave the participants 98.19% acceptance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信