有曲率的 H 跳独立亚模态最大化问题

IF 3.2 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Yang Lv , Chenchen Wu , Dachuan Xu , Ruiqi Yang
{"title":"有曲率的 H 跳独立亚模态最大化问题","authors":"Yang Lv ,&nbsp;Chenchen Wu ,&nbsp;Dachuan Xu ,&nbsp;Ruiqi Yang","doi":"10.1016/j.hcc.2024.100208","DOIUrl":null,"url":null,"abstract":"<div><p>The Connected Sensor Problem (CSP) presents a prevalent challenge in the realms of communication and Internet of Things (IoT) applications. Its primary aim is to maximize the coverage of users while maintaining connectivity among <em>K</em> sensors. Addressing the challenge of managing a large user base alongside a finite number of candidate locations, this paper proposes an extension to the CSP: the h-hop independently submodular maximization problem characterized by curvature <span><math><mi>α</mi></math></span>. We have developed an approximation algorithm that achieves a ratio of <span><math><mfrac><mrow><mn>1</mn><mo>−</mo><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><mi>α</mi></mrow></msup></mrow><mrow><mrow><mo>(</mo><mn>2</mn><mi>h</mi><mo>+</mo><mn>3</mn><mo>)</mo></mrow><mi>α</mi></mrow></mfrac></math></span>. The efficacy of this algorithm is demonstrated on the CSP, where it shows superior performance over existing algorithms, marked by an average enhancement of 8.4%.</p></div>","PeriodicalId":100605,"journal":{"name":"High-Confidence Computing","volume":"4 3","pages":"Article 100208"},"PeriodicalIF":3.2000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667295224000114/pdfft?md5=6545def2e75a2c91befd56e66f41423d&pid=1-s2.0-S2667295224000114-main.pdf","citationCount":"0","resultStr":"{\"title\":\"H-hop independently submodular maximization problem with curvature\",\"authors\":\"Yang Lv ,&nbsp;Chenchen Wu ,&nbsp;Dachuan Xu ,&nbsp;Ruiqi Yang\",\"doi\":\"10.1016/j.hcc.2024.100208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Connected Sensor Problem (CSP) presents a prevalent challenge in the realms of communication and Internet of Things (IoT) applications. Its primary aim is to maximize the coverage of users while maintaining connectivity among <em>K</em> sensors. Addressing the challenge of managing a large user base alongside a finite number of candidate locations, this paper proposes an extension to the CSP: the h-hop independently submodular maximization problem characterized by curvature <span><math><mi>α</mi></math></span>. We have developed an approximation algorithm that achieves a ratio of <span><math><mfrac><mrow><mn>1</mn><mo>−</mo><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><mi>α</mi></mrow></msup></mrow><mrow><mrow><mo>(</mo><mn>2</mn><mi>h</mi><mo>+</mo><mn>3</mn><mo>)</mo></mrow><mi>α</mi></mrow></mfrac></math></span>. The efficacy of this algorithm is demonstrated on the CSP, where it shows superior performance over existing algorithms, marked by an average enhancement of 8.4%.</p></div>\",\"PeriodicalId\":100605,\"journal\":{\"name\":\"High-Confidence Computing\",\"volume\":\"4 3\",\"pages\":\"Article 100208\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667295224000114/pdfft?md5=6545def2e75a2c91befd56e66f41423d&pid=1-s2.0-S2667295224000114-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High-Confidence Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667295224000114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High-Confidence Computing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667295224000114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

互联传感器问题(CSP)是通信和物联网(IoT)应用领域的一个普遍挑战。其主要目的是最大限度地扩大用户覆盖范围,同时保持 K 个传感器之间的连接。为了应对在有限的候选位置中管理庞大用户群的挑战,本文提出了 CSP 的扩展:以曲率 α 为特征的 h 跳独立亚模块最大化问题。我们在 CSP 上证明了这种算法的有效性,它比现有算法表现出更优越的性能,平均提高了 8.4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
H-hop independently submodular maximization problem with curvature

The Connected Sensor Problem (CSP) presents a prevalent challenge in the realms of communication and Internet of Things (IoT) applications. Its primary aim is to maximize the coverage of users while maintaining connectivity among K sensors. Addressing the challenge of managing a large user base alongside a finite number of candidate locations, this paper proposes an extension to the CSP: the h-hop independently submodular maximization problem characterized by curvature α. We have developed an approximation algorithm that achieves a ratio of 1eα(2h+3)α. The efficacy of this algorithm is demonstrated on the CSP, where it shows superior performance over existing algorithms, marked by an average enhancement of 8.4%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信