通过左截断和右截断生存数据的一致性指数进行特征筛选

IF 0.8 4区 数学 Q3 STATISTICS & PROBABILITY
Li-Pang Chen
{"title":"通过左截断和右截断生存数据的一致性指数进行特征筛选","authors":"Li-Pang Chen","doi":"10.1016/j.jspi.2024.106153","DOIUrl":null,"url":null,"abstract":"<div><p>Ultrahigh-dimensional data analysis has been a popular topic in decades. In the framework of ultrahigh-dimensional setting, feature screening methods are key techniques to retain informative covariates and screen out non-informative ones when the dimension of covariates is extremely larger than the sample size. In the presence of incomplete data caused by censoring, several valid methods have also been developed to deal with ultrahigh-dimensional covariates for time-to-event data. However, little approach is available to handle feature screening for survival data subject to biased sample, which is usually induced by left-truncation. In this paper, we extend the C-index estimation proposed by Hartman et al. (2023) to develop a valid feature screening procedure to deal with left-truncated and right-censored survival data subject to ultrahigh-dimensional covariates. The sure screening property is also rigorously established to justify the proposed method. Numerical results also verify the validity of the proposed procedure.</p></div>","PeriodicalId":50039,"journal":{"name":"Journal of Statistical Planning and Inference","volume":"232 ","pages":"Article 106153"},"PeriodicalIF":0.8000,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feature screening via concordance indices for left-truncated and right-censored survival data\",\"authors\":\"Li-Pang Chen\",\"doi\":\"10.1016/j.jspi.2024.106153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Ultrahigh-dimensional data analysis has been a popular topic in decades. In the framework of ultrahigh-dimensional setting, feature screening methods are key techniques to retain informative covariates and screen out non-informative ones when the dimension of covariates is extremely larger than the sample size. In the presence of incomplete data caused by censoring, several valid methods have also been developed to deal with ultrahigh-dimensional covariates for time-to-event data. However, little approach is available to handle feature screening for survival data subject to biased sample, which is usually induced by left-truncation. In this paper, we extend the C-index estimation proposed by Hartman et al. (2023) to develop a valid feature screening procedure to deal with left-truncated and right-censored survival data subject to ultrahigh-dimensional covariates. The sure screening property is also rigorously established to justify the proposed method. Numerical results also verify the validity of the proposed procedure.</p></div>\",\"PeriodicalId\":50039,\"journal\":{\"name\":\"Journal of Statistical Planning and Inference\",\"volume\":\"232 \",\"pages\":\"Article 106153\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Planning and Inference\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378375824000107\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Planning and Inference","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378375824000107","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

几十年来,超高维数据分析一直是一个热门话题。在超高维设置的框架下,当协变量的维度比样本量大得多时,特征筛选方法是保留有信息量的协变量并筛选出无信息量的协变量的关键技术。在普查导致数据不完整的情况下,也开发出了几种有效的方法来处理时间到事件数据的超高维协变量。然而,目前还没有什么方法可以处理生存数据的特征筛选问题,因为生存数据的样本存在偏差,而偏差通常是由左截断引起的。在本文中,我们扩展了 Hartman 等人(2023 年)提出的 C 指数估计方法,开发出一种有效的特征筛选程序,用于处理左截断和右删失的超高维协变量生存数据。此外,还严格建立了确定的筛选属性,以证明所提出的方法是正确的。数值结果也验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feature screening via concordance indices for left-truncated and right-censored survival data

Ultrahigh-dimensional data analysis has been a popular topic in decades. In the framework of ultrahigh-dimensional setting, feature screening methods are key techniques to retain informative covariates and screen out non-informative ones when the dimension of covariates is extremely larger than the sample size. In the presence of incomplete data caused by censoring, several valid methods have also been developed to deal with ultrahigh-dimensional covariates for time-to-event data. However, little approach is available to handle feature screening for survival data subject to biased sample, which is usually induced by left-truncation. In this paper, we extend the C-index estimation proposed by Hartman et al. (2023) to develop a valid feature screening procedure to deal with left-truncated and right-censored survival data subject to ultrahigh-dimensional covariates. The sure screening property is also rigorously established to justify the proposed method. Numerical results also verify the validity of the proposed procedure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Statistical Planning and Inference
Journal of Statistical Planning and Inference 数学-统计学与概率论
CiteScore
2.10
自引率
11.10%
发文量
78
审稿时长
3-6 weeks
期刊介绍: The Journal of Statistical Planning and Inference offers itself as a multifaceted and all-inclusive bridge between classical aspects of statistics and probability, and the emerging interdisciplinary aspects that have a potential of revolutionizing the subject. While we maintain our traditional strength in statistical inference, design, classical probability, and large sample methods, we also have a far more inclusive and broadened scope to keep up with the new problems that confront us as statisticians, mathematicians, and scientists. We publish high quality articles in all branches of statistics, probability, discrete mathematics, machine learning, and bioinformatics. We also especially welcome well written and up to date review articles on fundamental themes of statistics, probability, machine learning, and general biostatistics. Thoughtful letters to the editors, interesting problems in need of a solution, and short notes carrying an element of elegance or beauty are equally welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信