带有熵损失和正则化核网络的分布式稳健回归

Ting Hu, Renjie Guo
{"title":"带有熵损失和正则化核网络的分布式稳健回归","authors":"Ting Hu, Renjie Guo","doi":"10.1142/s0219530523500355","DOIUrl":null,"url":null,"abstract":"Distributed learning has attracted considerable attention in recent years due to its power to deal with big data in various science and engineering problems. Based on a divide-and-conquer strategy, this paper studies the distributed robust regression algorithm associated with correntropy losses and coefficient regularization in the scheme of kernel networks, where the kernel functions are not required to be symmetric or positive semi-definite. We establish explicit convergence results of such distributed algorithm depending on the number of data partitions, robustness and regularization parameters. We show that with suitable parameter choices the distributed robust algorithm can obtain the optimal convergence rate in the minimax sense, and simultaneously reduce the computational complexity and memory requirement in the standard (non-distributed) algorithms.","PeriodicalId":503529,"journal":{"name":"Analysis and Applications","volume":"38 14","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributed robust regression with correntropy losses and regularization kernel networks\",\"authors\":\"Ting Hu, Renjie Guo\",\"doi\":\"10.1142/s0219530523500355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Distributed learning has attracted considerable attention in recent years due to its power to deal with big data in various science and engineering problems. Based on a divide-and-conquer strategy, this paper studies the distributed robust regression algorithm associated with correntropy losses and coefficient regularization in the scheme of kernel networks, where the kernel functions are not required to be symmetric or positive semi-definite. We establish explicit convergence results of such distributed algorithm depending on the number of data partitions, robustness and regularization parameters. We show that with suitable parameter choices the distributed robust algorithm can obtain the optimal convergence rate in the minimax sense, and simultaneously reduce the computational complexity and memory requirement in the standard (non-distributed) algorithms.\",\"PeriodicalId\":503529,\"journal\":{\"name\":\"Analysis and Applications\",\"volume\":\"38 14\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219530523500355\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219530523500355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,分布式学习因其在各种科学和工程问题中处理大数据的能力而备受关注。本文基于分而治之的策略,研究了核网络方案中与熵损失和系数正则化相关的分布式鲁棒回归算法,其中核函数不要求对称或正半有限。我们根据数据分区的数量、鲁棒性和正则化参数,建立了这种分布式算法的明确收敛结果。我们证明,在参数选择合适的情况下,分布式鲁棒算法可以获得最小值意义上的最优收敛率,同时降低标准(非分布式)算法的计算复杂度和内存需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distributed robust regression with correntropy losses and regularization kernel networks
Distributed learning has attracted considerable attention in recent years due to its power to deal with big data in various science and engineering problems. Based on a divide-and-conquer strategy, this paper studies the distributed robust regression algorithm associated with correntropy losses and coefficient regularization in the scheme of kernel networks, where the kernel functions are not required to be symmetric or positive semi-definite. We establish explicit convergence results of such distributed algorithm depending on the number of data partitions, robustness and regularization parameters. We show that with suitable parameter choices the distributed robust algorithm can obtain the optimal convergence rate in the minimax sense, and simultaneously reduce the computational complexity and memory requirement in the standard (non-distributed) algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信