构建和索引双射和扩展 Burrows-Wheeler 变换

IF 0.8 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Hideo Bannai, Juha Kärkkäinen, Dominik Köppl, Marcin Pia̧tkowski
{"title":"构建和索引双射和扩展 Burrows-Wheeler 变换","authors":"Hideo Bannai,&nbsp;Juha Kärkkäinen,&nbsp;Dominik Köppl,&nbsp;Marcin Pia̧tkowski","doi":"10.1016/j.ic.2024.105153","DOIUrl":null,"url":null,"abstract":"<div><p>The Burrows–Wheeler transform (BWT) is a permutation whose applications are prevalent in data compression and text indexing. The <em>bijective BWT</em> is a bijective variant of it that has not yet been studied for text indexing applications. We fill this gap by proposing a self-index built on the bijective BWT. The self-index applies the backward search technique of the FM-index to find a pattern <em>P</em> with <span><math><mi>O</mi><mo>(</mo><mo>|</mo><mi>P</mi><mo>|</mo><mi>lg</mi><mo>⁡</mo><mo>|</mo><mi>P</mi><mo>|</mo><mo>)</mo></math></span> backward search steps. Additionally, we propose the first linear-time construction algorithm that is based on SAIS, improving the best known result of <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mi>lg</mi><mo>⁡</mo><mi>n</mi><mo>/</mo><mi>lg</mi><mo>⁡</mo><mi>lg</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span> time to linear.</p></div>","PeriodicalId":54985,"journal":{"name":"Information and Computation","volume":"297 ","pages":"Article 105153"},"PeriodicalIF":0.8000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constructing and indexing the bijective and extended Burrows–Wheeler transform\",\"authors\":\"Hideo Bannai,&nbsp;Juha Kärkkäinen,&nbsp;Dominik Köppl,&nbsp;Marcin Pia̧tkowski\",\"doi\":\"10.1016/j.ic.2024.105153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Burrows–Wheeler transform (BWT) is a permutation whose applications are prevalent in data compression and text indexing. The <em>bijective BWT</em> is a bijective variant of it that has not yet been studied for text indexing applications. We fill this gap by proposing a self-index built on the bijective BWT. The self-index applies the backward search technique of the FM-index to find a pattern <em>P</em> with <span><math><mi>O</mi><mo>(</mo><mo>|</mo><mi>P</mi><mo>|</mo><mi>lg</mi><mo>⁡</mo><mo>|</mo><mi>P</mi><mo>|</mo><mo>)</mo></math></span> backward search steps. Additionally, we propose the first linear-time construction algorithm that is based on SAIS, improving the best known result of <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mi>lg</mi><mo>⁡</mo><mi>n</mi><mo>/</mo><mi>lg</mi><mo>⁡</mo><mi>lg</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span> time to linear.</p></div>\",\"PeriodicalId\":54985,\"journal\":{\"name\":\"Information and Computation\",\"volume\":\"297 \",\"pages\":\"Article 105153\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information and Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S089054012400018X\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information and Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S089054012400018X","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

Burrows-Wheeler 变换(BWT)是一种排列组合,广泛应用于数据压缩和文本索引。双射 BWT 是它的一种双射变体,目前还没有人研究过它在文本索引中的应用。我们提出了一种基于双射 BWT 的自索引,填补了这一空白。自索引应用 FM-index 的后向搜索技术,以 O(|P|lg|P|) 的后向搜索步骤找到模式 P。此外,我们还提出了第一个基于 SAIS 的线性时间构造算法,将已知最佳结果的 O(nlgn/lglgn) 时间改进为线性时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Constructing and indexing the bijective and extended Burrows–Wheeler transform

The Burrows–Wheeler transform (BWT) is a permutation whose applications are prevalent in data compression and text indexing. The bijective BWT is a bijective variant of it that has not yet been studied for text indexing applications. We fill this gap by proposing a self-index built on the bijective BWT. The self-index applies the backward search technique of the FM-index to find a pattern P with O(|P|lg|P|) backward search steps. Additionally, we propose the first linear-time construction algorithm that is based on SAIS, improving the best known result of O(nlgn/lglgn) time to linear.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information and Computation
Information and Computation 工程技术-计算机:理论方法
CiteScore
2.30
自引率
0.00%
发文量
119
审稿时长
140 days
期刊介绍: Information and Computation welcomes original papers in all areas of theoretical computer science and computational applications of information theory. Survey articles of exceptional quality will also be considered. Particularly welcome are papers contributing new results in active theoretical areas such as -Biological computation and computational biology- Computational complexity- Computer theorem-proving- Concurrency and distributed process theory- Cryptographic theory- Data base theory- Decision problems in logic- Design and analysis of algorithms- Discrete optimization and mathematical programming- Inductive inference and learning theory- Logic & constraint programming- Program verification & model checking- Probabilistic & Quantum computation- Semantics of programming languages- Symbolic computation, lambda calculus, and rewriting systems- Types and typechecking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信