Ronghui Tian, Guoxiu Lu, Shiting Tang, Liang Sang, He Ma, Wei Qian, Wei Yang
{"title":"利用传统放射组学和迁移学习特征对乳腺肿瘤超声图像进行良性和恶性分类:一项多中心回顾性研究","authors":"Ronghui Tian, Guoxiu Lu, Shiting Tang, Liang Sang, He Ma, Wei Qian, Wei Yang","doi":"10.1016/j.medengphy.2024.104117","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":507405,"journal":{"name":"Medical Engineering & Physics","volume":"7 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Benign and Malignant Classification of Breast Tumor Ultrasound Images Using Conventional Radiomics and Transfer Learning Features: A Multicenter Retrospective Study\",\"authors\":\"Ronghui Tian, Guoxiu Lu, Shiting Tang, Liang Sang, He Ma, Wei Qian, Wei Yang\",\"doi\":\"10.1016/j.medengphy.2024.104117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\",\"PeriodicalId\":507405,\"journal\":{\"name\":\"Medical Engineering & Physics\",\"volume\":\"7 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical Engineering & Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.medengphy.2024.104117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Engineering & Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.medengphy.2024.104117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Benign and Malignant Classification of Breast Tumor Ultrasound Images Using Conventional Radiomics and Transfer Learning Features: A Multicenter Retrospective Study