Zili Zhang, Xiang Li, Tobias Greve Larsen, Tao Sun, Qingshan Yang
{"title":"基于极点位置校准用于旋转风力涡轮机叶片的电磁可实现感应器式振动吸收器 (IDVA)","authors":"Zili Zhang, Xiang Li, Tobias Greve Larsen, Tao Sun, Qingshan Yang","doi":"10.1155/2024/7255774","DOIUrl":null,"url":null,"abstract":"<div>\n <p>This paper deals with edgewise vibration mitigation of rotating wind turbine blades by means of inerter-based vibration absorber (IDVA), which can be realized both mechanically and electromagnetically. Introducing the electromagnetically-realizable IDVA to the blade forms a 3-degree-of-freedom (3-DOF) blade-IDVA system consisting of the rotating blade, an absorber, and a series inerter-dashpot-spring subsystem. Analytical optimal design formulas of the rotating blade-installed IDVA are then derived using a pole-placement method where the equal-modal-damping-ratio principle and the triple-root-bifurcation condition are applied. The analytical formulas show that the optimal parameters for the blade-IDVA system merely depend on the spinning speed of the rotor given the IDVA location and the absorber mass. Numerical results of the NREL 5 MW wind turbine with optimal IDVA show that optimal IDVA leads to superior performance than optimal TMD in mitigating the blade edgewise vibration and behaves nearly as same as optimal RIDTMD, along with slightly optimal damper parameters variation. This means that the inerter-dashpot-spring system can be deployed flexibly for damping edgewise vibrations of rotating blades.</p>\n </div>","PeriodicalId":49471,"journal":{"name":"Structural Control & Health Monitoring","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/7255774","citationCount":"0","resultStr":"{\"title\":\"Pole-Placement-Based Calibration of an Electromagnetically Realizable Inerter-Based Vibration Absorber (IDVA) for Rotating Wind Turbine Blades\",\"authors\":\"Zili Zhang, Xiang Li, Tobias Greve Larsen, Tao Sun, Qingshan Yang\",\"doi\":\"10.1155/2024/7255774\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>This paper deals with edgewise vibration mitigation of rotating wind turbine blades by means of inerter-based vibration absorber (IDVA), which can be realized both mechanically and electromagnetically. Introducing the electromagnetically-realizable IDVA to the blade forms a 3-degree-of-freedom (3-DOF) blade-IDVA system consisting of the rotating blade, an absorber, and a series inerter-dashpot-spring subsystem. Analytical optimal design formulas of the rotating blade-installed IDVA are then derived using a pole-placement method where the equal-modal-damping-ratio principle and the triple-root-bifurcation condition are applied. The analytical formulas show that the optimal parameters for the blade-IDVA system merely depend on the spinning speed of the rotor given the IDVA location and the absorber mass. Numerical results of the NREL 5 MW wind turbine with optimal IDVA show that optimal IDVA leads to superior performance than optimal TMD in mitigating the blade edgewise vibration and behaves nearly as same as optimal RIDTMD, along with slightly optimal damper parameters variation. This means that the inerter-dashpot-spring system can be deployed flexibly for damping edgewise vibrations of rotating blades.</p>\\n </div>\",\"PeriodicalId\":49471,\"journal\":{\"name\":\"Structural Control & Health Monitoring\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/7255774\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Control & Health Monitoring\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/7255774\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Control & Health Monitoring","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/7255774","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Pole-Placement-Based Calibration of an Electromagnetically Realizable Inerter-Based Vibration Absorber (IDVA) for Rotating Wind Turbine Blades
This paper deals with edgewise vibration mitigation of rotating wind turbine blades by means of inerter-based vibration absorber (IDVA), which can be realized both mechanically and electromagnetically. Introducing the electromagnetically-realizable IDVA to the blade forms a 3-degree-of-freedom (3-DOF) blade-IDVA system consisting of the rotating blade, an absorber, and a series inerter-dashpot-spring subsystem. Analytical optimal design formulas of the rotating blade-installed IDVA are then derived using a pole-placement method where the equal-modal-damping-ratio principle and the triple-root-bifurcation condition are applied. The analytical formulas show that the optimal parameters for the blade-IDVA system merely depend on the spinning speed of the rotor given the IDVA location and the absorber mass. Numerical results of the NREL 5 MW wind turbine with optimal IDVA show that optimal IDVA leads to superior performance than optimal TMD in mitigating the blade edgewise vibration and behaves nearly as same as optimal RIDTMD, along with slightly optimal damper parameters variation. This means that the inerter-dashpot-spring system can be deployed flexibly for damping edgewise vibrations of rotating blades.
期刊介绍:
The Journal Structural Control and Health Monitoring encompasses all theoretical and technological aspects of structural control, structural health monitoring theory and smart materials and structures. The journal focuses on aerospace, civil, infrastructure and mechanical engineering applications.
Original contributions based on analytical, computational and experimental methods are solicited in three main areas: monitoring, control, and smart materials and structures, covering subjects such as system identification, health monitoring, health diagnostics, multi-functional materials, signal processing, sensor technology, passive, active and semi active control schemes and implementations, shape memory alloys, piezoelectrics and mechatronics.
Also of interest are actuator design, dynamic systems, dynamic stability, artificial intelligence tools, data acquisition, wireless communications, measurements, MEMS/NEMS sensors for local damage detection, optical fibre sensors for health monitoring, remote control of monitoring systems, sensor-logger combinations for mobile applications, corrosion sensors, scour indicators and experimental techniques.