Yuehan Qu, Hongshan Zhao, Shice Zhao, Libo Ma, Zengqiang Mi
{"title":"基于不完整物联网传感数据的电力变压器绕组绝缘劣化评估方法","authors":"Yuehan Qu, Hongshan Zhao, Shice Zhao, Libo Ma, Zengqiang Mi","doi":"10.1049/smt2.12174","DOIUrl":null,"url":null,"abstract":"<p>This paper proposes a novel evaluation method to address the challenge of evaluating insulation degradation in power transformer windings based on incomplete online Internet of Things (IoT) sensing data. The method leverages the Wasserstein Slim Generative Adversarial Imputation Network with Gradient Penalty algorithm to fill the irregularly missing power transformer IoT perception data, including voltage, current, temperature, and partial discharge. Subsequently, electrical, thermal, and mechanical performance degradation damage indicators for transformer winding insulation are constructed using the filled and complete IoT perception data. By applying the tensor fusion algorithm, the characteristics of these degradation damage indicators are fused, leading to the development of a comprehensive degradation evaluation index for the winding insulation. The evaluation of the winding insulation degradation state is achieved through the minimum quantization error method. The proposed method is validated using the real-world transformer IoT perception data, and the experimental results demonstrate its ability to accurately assess the degree of winding insulation degradation, regardless of the presence of random or continuous irregularities in IoT sensing data.</p>","PeriodicalId":54999,"journal":{"name":"Iet Science Measurement & Technology","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/smt2.12174","citationCount":"0","resultStr":"{\"title\":\"Evaluation method for insulation degradation of power transformer windings based on incomplete internet of things sensing data\",\"authors\":\"Yuehan Qu, Hongshan Zhao, Shice Zhao, Libo Ma, Zengqiang Mi\",\"doi\":\"10.1049/smt2.12174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper proposes a novel evaluation method to address the challenge of evaluating insulation degradation in power transformer windings based on incomplete online Internet of Things (IoT) sensing data. The method leverages the Wasserstein Slim Generative Adversarial Imputation Network with Gradient Penalty algorithm to fill the irregularly missing power transformer IoT perception data, including voltage, current, temperature, and partial discharge. Subsequently, electrical, thermal, and mechanical performance degradation damage indicators for transformer winding insulation are constructed using the filled and complete IoT perception data. By applying the tensor fusion algorithm, the characteristics of these degradation damage indicators are fused, leading to the development of a comprehensive degradation evaluation index for the winding insulation. The evaluation of the winding insulation degradation state is achieved through the minimum quantization error method. The proposed method is validated using the real-world transformer IoT perception data, and the experimental results demonstrate its ability to accurately assess the degree of winding insulation degradation, regardless of the presence of random or continuous irregularities in IoT sensing data.</p>\",\"PeriodicalId\":54999,\"journal\":{\"name\":\"Iet Science Measurement & Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/smt2.12174\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iet Science Measurement & Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/smt2.12174\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Science Measurement & Technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/smt2.12174","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Evaluation method for insulation degradation of power transformer windings based on incomplete internet of things sensing data
This paper proposes a novel evaluation method to address the challenge of evaluating insulation degradation in power transformer windings based on incomplete online Internet of Things (IoT) sensing data. The method leverages the Wasserstein Slim Generative Adversarial Imputation Network with Gradient Penalty algorithm to fill the irregularly missing power transformer IoT perception data, including voltage, current, temperature, and partial discharge. Subsequently, electrical, thermal, and mechanical performance degradation damage indicators for transformer winding insulation are constructed using the filled and complete IoT perception data. By applying the tensor fusion algorithm, the characteristics of these degradation damage indicators are fused, leading to the development of a comprehensive degradation evaluation index for the winding insulation. The evaluation of the winding insulation degradation state is achieved through the minimum quantization error method. The proposed method is validated using the real-world transformer IoT perception data, and the experimental results demonstrate its ability to accurately assess the degree of winding insulation degradation, regardless of the presence of random or continuous irregularities in IoT sensing data.
期刊介绍:
IET Science, Measurement & Technology publishes papers in science, engineering and technology underpinning electronic and electrical engineering, nanotechnology and medical instrumentation.The emphasis of the journal is on theory, simulation methodologies and measurement techniques.
The major themes of the journal are:
- electromagnetism including electromagnetic theory, computational electromagnetics and EMC
- properties and applications of dielectric, magnetic, magneto-optic, piezoelectric materials down to the nanometre scale
- measurement and instrumentation including sensors, actuators, medical instrumentation, fundamentals of measurement including measurement standards, uncertainty, dissemination and calibration
Applications are welcome for illustrative purposes but the novelty and originality should focus on the proposed new methods.