太阳耀斑及其相关小尺度结构的 MHD 数值模拟

Mauricio Gonz'alez-Serv'in, J. J. Gonz'alez-Avil'es
{"title":"太阳耀斑及其相关小尺度结构的 MHD 数值模拟","authors":"Mauricio Gonz'alez-Serv'in, J. J. Gonz'alez-Avil'es","doi":"10.1093/mnras/stae375","DOIUrl":null,"url":null,"abstract":"\n Using numerical simulations, we study the formation and dynamics of solar flares in a local region of the solar atmosphere. The magnetohydrodynamics (MHD) equations describe the dynamic evolution of flares, including space-dependent and anomalous magnetic resistivity and highly anisotropic thermal conduction on a 2.5 D slice. We adopt an initial solar atmospheric model in magnetohydrostatic equilibrium, with a magnetic configuration consisting of a vertical current sheet, which helps trigger the magnetic reconnection process. Specifically, we study three scenarios, two with only resistivity and the third with resistivity plus thermal conduction. The main results of the numerical simulations show differences in the global morphology of the flares, including the post-flare loops and the current sheet in three cases. In particular, localized resistivity produces more substructure around the post-flare loops that could be related to the Ritchmyer-Meshkov Instability (RMI). Furthermore, in the scenario of anomalous resistivity, we identify the formation of a plasmoid and a jet at coronal heights. On the other hand, in the scenario with resistivity plus thermal conduction, the post-flare loops are smooth, and no apparent substructures develop. Besides, in the z − component of the current density for the Res+TC case, we observe the development of multiple magnetic islands generated due to the Tearing instability in the non-linear regime.","PeriodicalId":506975,"journal":{"name":"Monthly Notices of the Royal Astronomical Society","volume":"272 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical MHD simulations of solar flares and their associated small-scale structures\",\"authors\":\"Mauricio Gonz'alez-Serv'in, J. J. Gonz'alez-Avil'es\",\"doi\":\"10.1093/mnras/stae375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Using numerical simulations, we study the formation and dynamics of solar flares in a local region of the solar atmosphere. The magnetohydrodynamics (MHD) equations describe the dynamic evolution of flares, including space-dependent and anomalous magnetic resistivity and highly anisotropic thermal conduction on a 2.5 D slice. We adopt an initial solar atmospheric model in magnetohydrostatic equilibrium, with a magnetic configuration consisting of a vertical current sheet, which helps trigger the magnetic reconnection process. Specifically, we study three scenarios, two with only resistivity and the third with resistivity plus thermal conduction. The main results of the numerical simulations show differences in the global morphology of the flares, including the post-flare loops and the current sheet in three cases. In particular, localized resistivity produces more substructure around the post-flare loops that could be related to the Ritchmyer-Meshkov Instability (RMI). Furthermore, in the scenario of anomalous resistivity, we identify the formation of a plasmoid and a jet at coronal heights. On the other hand, in the scenario with resistivity plus thermal conduction, the post-flare loops are smooth, and no apparent substructures develop. Besides, in the z − component of the current density for the Res+TC case, we observe the development of multiple magnetic islands generated due to the Tearing instability in the non-linear regime.\",\"PeriodicalId\":506975,\"journal\":{\"name\":\"Monthly Notices of the Royal Astronomical Society\",\"volume\":\"272 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monthly Notices of the Royal Astronomical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/mnras/stae375\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monthly Notices of the Royal Astronomical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/mnras/stae375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过数值模拟,我们研究了太阳耀斑在太阳大气局部区域的形成和动力学。磁流体力学(MHD)方程描述了耀斑的动态演化,包括与空间有关的反常磁电阻率和 2.5 D 切片上的高度各向异性热传导。我们采用了一个处于磁流体静力学平衡状态的初始太阳大气模型,其磁配置由垂直电流片组成,有助于触发磁重联过程。具体来说,我们研究了三种情况,其中两种只有电阻率,第三种是电阻率加热传导。数值模拟的主要结果显示了耀斑整体形态的差异,包括三种情况下的耀斑后环路和电流片。特别是,局部电阻率在耀斑后环路周围产生了更多的亚结构,这可能与里奇迈尔-梅什科夫不稳定性(RMI)有关。此外,在电阻率异常的情况下,我们发现在日冕高度形成了等离子体和喷流。另一方面,在电阻率加热传导的情况下,耀斑后的环路是平滑的,没有出现明显的子结构。此外,在电阻率+热传导情况下的电流密度z分量中,我们观察到由于非线性机制中的撕裂不稳定性而产生的多个磁岛的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical MHD simulations of solar flares and their associated small-scale structures
Using numerical simulations, we study the formation and dynamics of solar flares in a local region of the solar atmosphere. The magnetohydrodynamics (MHD) equations describe the dynamic evolution of flares, including space-dependent and anomalous magnetic resistivity and highly anisotropic thermal conduction on a 2.5 D slice. We adopt an initial solar atmospheric model in magnetohydrostatic equilibrium, with a magnetic configuration consisting of a vertical current sheet, which helps trigger the magnetic reconnection process. Specifically, we study three scenarios, two with only resistivity and the third with resistivity plus thermal conduction. The main results of the numerical simulations show differences in the global morphology of the flares, including the post-flare loops and the current sheet in three cases. In particular, localized resistivity produces more substructure around the post-flare loops that could be related to the Ritchmyer-Meshkov Instability (RMI). Furthermore, in the scenario of anomalous resistivity, we identify the formation of a plasmoid and a jet at coronal heights. On the other hand, in the scenario with resistivity plus thermal conduction, the post-flare loops are smooth, and no apparent substructures develop. Besides, in the z − component of the current density for the Res+TC case, we observe the development of multiple magnetic islands generated due to the Tearing instability in the non-linear regime.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信