{"title":"受制于致动器饱和及部分失效的机器人机械手的自适应跟踪控制","authors":"Van-Tam Ngo, Yen-Chen Liu","doi":"10.1115/1.4064653","DOIUrl":null,"url":null,"abstract":"\n This paper introduces an adaptive control design tailored for robotic systems described by Euler-Lagrange equations under actuator saturation and partial loss of effectiveness. The adaptive law put forth not only retains conventional control properties but also extends its scope to effectively address challenges posed by actuator saturation and partial loss of effectiveness. The framework's primary focus is on bolstering system robustness, thereby ensuring the achievement of uniformly ultimate bounded tracking errors. The stability and convergence of the system's behavior are rigorously established through the application of the Lyapunov analysis technique. Moreover, the effectiveness and superiority of the introduced framework are compellingly demonstrated through a series of practical simulation and experimental instances.","PeriodicalId":327130,"journal":{"name":"ASME Letters in Dynamic Systems and Control","volume":"8 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Tracking Control of Robotic Manipulator Subjected to Actuator Saturation and Partial Loss of Effectiveness\",\"authors\":\"Van-Tam Ngo, Yen-Chen Liu\",\"doi\":\"10.1115/1.4064653\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This paper introduces an adaptive control design tailored for robotic systems described by Euler-Lagrange equations under actuator saturation and partial loss of effectiveness. The adaptive law put forth not only retains conventional control properties but also extends its scope to effectively address challenges posed by actuator saturation and partial loss of effectiveness. The framework's primary focus is on bolstering system robustness, thereby ensuring the achievement of uniformly ultimate bounded tracking errors. The stability and convergence of the system's behavior are rigorously established through the application of the Lyapunov analysis technique. Moreover, the effectiveness and superiority of the introduced framework are compellingly demonstrated through a series of practical simulation and experimental instances.\",\"PeriodicalId\":327130,\"journal\":{\"name\":\"ASME Letters in Dynamic Systems and Control\",\"volume\":\"8 10\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASME Letters in Dynamic Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4064653\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME Letters in Dynamic Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4064653","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adaptive Tracking Control of Robotic Manipulator Subjected to Actuator Saturation and Partial Loss of Effectiveness
This paper introduces an adaptive control design tailored for robotic systems described by Euler-Lagrange equations under actuator saturation and partial loss of effectiveness. The adaptive law put forth not only retains conventional control properties but also extends its scope to effectively address challenges posed by actuator saturation and partial loss of effectiveness. The framework's primary focus is on bolstering system robustness, thereby ensuring the achievement of uniformly ultimate bounded tracking errors. The stability and convergence of the system's behavior are rigorously established through the application of the Lyapunov analysis technique. Moreover, the effectiveness and superiority of the introduced framework are compellingly demonstrated through a series of practical simulation and experimental instances.