{"title":"根据摩擦定律确定克吕佩尔摩擦理论中橡胶的穿透深度和激发体积","authors":"Aban Tom Isaiah, K. Ramarathnam","doi":"10.2346/507469","DOIUrl":null,"url":null,"abstract":"\n This article aims to determine the excited volume and penetration depth in the theoretical friction model of rubber sliding on a corundum surface. The theoretical procedure of the Klüppel friction theory was implemented using the power spectral density of the corundum surface and viscoelastic model for rubber. The power spectral density was obtained with a power-law mode using the height difference correlation function parameters calculated from a surface measurement taken with a profilometer. Viscoelastic model parameters for the rubber were derived from a dynamic mechanical analyzer. Empirical law for friction coefficient obtained from the side force experiments and simulations of a laboratory abrasion tester (LAT 100) were used in this work. The friction coefficient from the theoretical procedure was matched with the empirical friction coefficient to estimate the penetration depth and excited volume of rubber. The correlation between the theoretical and empirical model was satisfactory. Estimating the penetration depth and excited volume of sliding rubber provides an insight into the contact conditions near surface asperities and the volume of rubber contributing to energy dissipation during the frictional process.","PeriodicalId":44601,"journal":{"name":"Tire Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determination of Penetration Depth and Excited Volume of Rubber in Klüppel Friction Theory from Friction Law\",\"authors\":\"Aban Tom Isaiah, K. Ramarathnam\",\"doi\":\"10.2346/507469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This article aims to determine the excited volume and penetration depth in the theoretical friction model of rubber sliding on a corundum surface. The theoretical procedure of the Klüppel friction theory was implemented using the power spectral density of the corundum surface and viscoelastic model for rubber. The power spectral density was obtained with a power-law mode using the height difference correlation function parameters calculated from a surface measurement taken with a profilometer. Viscoelastic model parameters for the rubber were derived from a dynamic mechanical analyzer. Empirical law for friction coefficient obtained from the side force experiments and simulations of a laboratory abrasion tester (LAT 100) were used in this work. The friction coefficient from the theoretical procedure was matched with the empirical friction coefficient to estimate the penetration depth and excited volume of rubber. The correlation between the theoretical and empirical model was satisfactory. Estimating the penetration depth and excited volume of sliding rubber provides an insight into the contact conditions near surface asperities and the volume of rubber contributing to energy dissipation during the frictional process.\",\"PeriodicalId\":44601,\"journal\":{\"name\":\"Tire Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tire Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2346/507469\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tire Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2346/507469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Determination of Penetration Depth and Excited Volume of Rubber in Klüppel Friction Theory from Friction Law
This article aims to determine the excited volume and penetration depth in the theoretical friction model of rubber sliding on a corundum surface. The theoretical procedure of the Klüppel friction theory was implemented using the power spectral density of the corundum surface and viscoelastic model for rubber. The power spectral density was obtained with a power-law mode using the height difference correlation function parameters calculated from a surface measurement taken with a profilometer. Viscoelastic model parameters for the rubber were derived from a dynamic mechanical analyzer. Empirical law for friction coefficient obtained from the side force experiments and simulations of a laboratory abrasion tester (LAT 100) were used in this work. The friction coefficient from the theoretical procedure was matched with the empirical friction coefficient to estimate the penetration depth and excited volume of rubber. The correlation between the theoretical and empirical model was satisfactory. Estimating the penetration depth and excited volume of sliding rubber provides an insight into the contact conditions near surface asperities and the volume of rubber contributing to energy dissipation during the frictional process.
期刊介绍:
Tire Science and Technology is the world"s leading technical journal dedicated to tires. The Editor publishes original contributions that address the development and application of experimental, analytical, or computational science in which the tire figures prominently. Review papers may also be published. The journal aims to assure its readers authoritative, critically reviewed articles and the authors accessibility of their work in the permanent literature. The journal is published quarterly by the Tire Society, Inc., an Ohio not-for-profit corporation whose objective is to increase and disseminate knowledge of the science and technology of tires.