U. Severo, Bruno H. C. Ribeiro, Diogo de S. Germano
{"title":"具有指数非线性的准线性薛定谔方程的解的存在性","authors":"U. Severo, Bruno H. C. Ribeiro, Diogo de S. Germano","doi":"10.58997/ejde.2024.14","DOIUrl":null,"url":null,"abstract":"In this article we study the existence of solutions to quasilinear Schrodinger equations in the plane, involving a potential that can change sign and a nonlinear term that may be discontinuous and exhibit exponential critical growth. To prove our existence result, we combine the Trudinger-Moser inequality with a fixed point theorem.\nFor mote information see https://ejde.math.txstate.edu/Volumes/2024/14/abstr.html","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence of solutions to quasilinear Schrodinger equations with exponential nonlinearity\",\"authors\":\"U. Severo, Bruno H. C. Ribeiro, Diogo de S. Germano\",\"doi\":\"10.58997/ejde.2024.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article we study the existence of solutions to quasilinear Schrodinger equations in the plane, involving a potential that can change sign and a nonlinear term that may be discontinuous and exhibit exponential critical growth. To prove our existence result, we combine the Trudinger-Moser inequality with a fixed point theorem.\\nFor mote information see https://ejde.math.txstate.edu/Volumes/2024/14/abstr.html\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.58997/ejde.2024.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.58997/ejde.2024.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Existence of solutions to quasilinear Schrodinger equations with exponential nonlinearity
In this article we study the existence of solutions to quasilinear Schrodinger equations in the plane, involving a potential that can change sign and a nonlinear term that may be discontinuous and exhibit exponential critical growth. To prove our existence result, we combine the Trudinger-Moser inequality with a fixed point theorem.
For mote information see https://ejde.math.txstate.edu/Volumes/2024/14/abstr.html