{"title":"用于去除水中砷的磁性纳米复合材料","authors":"M. Ahmaruzzaman","doi":"10.3233/ajw240003","DOIUrl":null,"url":null,"abstract":"Arsenic significantly impacts human health and the environment and its removal from wastewater is still difficult. Magnetic nanoparticles have come to light as a viable arsenic remediation technique, providing a fresh and long-lasting water purification method. This study investigates the use of magnetic nanoparticles to remove arsenic by concentrating on their adsorption mechanism, kinetics, potential for adsorption, recovery, and promising use of this method in the future. Due to the extensive surface area and variable surface chemistry of magnetic nanoparticles, they can effectively adsorb arsenic from water sources. Because their magnetic properties simplify separation and regeneration, they may be used again with little to no efficiency loss. As a result, they reduce trash output by providing an ecologically acceptable alternative to traditional adsorbents. The present study also examines the kinetics and adsorption process of magnetic nanoparticles, emphasising their improved selectivity and capacity for adsorption. Due to these characteristics, the authors were able to successfully remove arsenic from wastewater, resulting in better water quality and decreased health hazards after exposure to arsenic. Additionally, the potential applications of magnetic nanoparticles in removing arsenic have been highlighted. It is envisaged that advances in material science and nanotechnology will create unique magnetic nanoparticles with even better performance. Combining hybrid materials and surface alterations can increase their effectiveness in wastewater treatment settings.","PeriodicalId":8553,"journal":{"name":"Asian Journal of Water, Environment and Pollution","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetic Nanocomposites for Removal of Arsenic from Water\",\"authors\":\"M. Ahmaruzzaman\",\"doi\":\"10.3233/ajw240003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Arsenic significantly impacts human health and the environment and its removal from wastewater is still difficult. Magnetic nanoparticles have come to light as a viable arsenic remediation technique, providing a fresh and long-lasting water purification method. This study investigates the use of magnetic nanoparticles to remove arsenic by concentrating on their adsorption mechanism, kinetics, potential for adsorption, recovery, and promising use of this method in the future. Due to the extensive surface area and variable surface chemistry of magnetic nanoparticles, they can effectively adsorb arsenic from water sources. Because their magnetic properties simplify separation and regeneration, they may be used again with little to no efficiency loss. As a result, they reduce trash output by providing an ecologically acceptable alternative to traditional adsorbents. The present study also examines the kinetics and adsorption process of magnetic nanoparticles, emphasising their improved selectivity and capacity for adsorption. Due to these characteristics, the authors were able to successfully remove arsenic from wastewater, resulting in better water quality and decreased health hazards after exposure to arsenic. Additionally, the potential applications of magnetic nanoparticles in removing arsenic have been highlighted. It is envisaged that advances in material science and nanotechnology will create unique magnetic nanoparticles with even better performance. Combining hybrid materials and surface alterations can increase their effectiveness in wastewater treatment settings.\",\"PeriodicalId\":8553,\"journal\":{\"name\":\"Asian Journal of Water, Environment and Pollution\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Water, Environment and Pollution\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/ajw240003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Water, Environment and Pollution","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/ajw240003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Magnetic Nanocomposites for Removal of Arsenic from Water
Arsenic significantly impacts human health and the environment and its removal from wastewater is still difficult. Magnetic nanoparticles have come to light as a viable arsenic remediation technique, providing a fresh and long-lasting water purification method. This study investigates the use of magnetic nanoparticles to remove arsenic by concentrating on their adsorption mechanism, kinetics, potential for adsorption, recovery, and promising use of this method in the future. Due to the extensive surface area and variable surface chemistry of magnetic nanoparticles, they can effectively adsorb arsenic from water sources. Because their magnetic properties simplify separation and regeneration, they may be used again with little to no efficiency loss. As a result, they reduce trash output by providing an ecologically acceptable alternative to traditional adsorbents. The present study also examines the kinetics and adsorption process of magnetic nanoparticles, emphasising their improved selectivity and capacity for adsorption. Due to these characteristics, the authors were able to successfully remove arsenic from wastewater, resulting in better water quality and decreased health hazards after exposure to arsenic. Additionally, the potential applications of magnetic nanoparticles in removing arsenic have been highlighted. It is envisaged that advances in material science and nanotechnology will create unique magnetic nanoparticles with even better performance. Combining hybrid materials and surface alterations can increase their effectiveness in wastewater treatment settings.
期刊介绍:
Asia, as a whole region, faces severe stress on water availability, primarily due to high population density. Many regions of the continent face severe problems of water pollution on local as well as regional scale and these have to be tackled with a pan-Asian approach. However, the available literature on the subject is generally based on research done in Europe and North America. Therefore, there is an urgent and strong need for an Asian journal with its focus on the region and wherein the region specific problems are addressed in an intelligent manner. In Asia, besides water, there are several other issues related to environment, such as; global warming and its impact; intense land/use and shifting pattern of agriculture; issues related to fertilizer applications and pesticide residues in soil and water; and solid and liquid waste management particularly in industrial and urban areas. Asia is also a region with intense mining activities whereby serious environmental problems related to land/use, loss of top soil, water pollution and acid mine drainage are faced by various communities. Essentially, Asians are confronted with environmental problems on many fronts. Many pressing issues in the region interlink various aspects of environmental problems faced by population in this densely habited region in the world. Pollution is one such serious issue for many countries since there are many transnational water bodies that spread the pollutants across the entire region. Water, environment and pollution together constitute a three axial problem that all concerned people in the region would like to focus on.