{"title":"利用平衡优化算法开发水和废水组件的管理和运行模型","authors":"Selami Kiliç, Abdullah Ates, M. Firat, S. Yilmaz","doi":"10.2166/ws.2024.019","DOIUrl":null,"url":null,"abstract":"\n A novel optimization model was developed using the equilibrium optimization algorithm to define the most appropriate management process according to the current state of urban water components in utilities. The basis of the optimization model is the current status analysis and management system, which consists of 11 main headings and 231 components. This model is applied for three utilities, and the results are presented in comparison with real-time data. Currently, the number of components with 0 or 1 score is 28, 19 and 69, respectively. The current average scores of the components in the utilities were obtained as 2.84, 3.43 and 2.48, respectively. Then, the improvement process of these components is optimized by the equilibrium optimization algorithm. The most appropriate targets were defined as 3.90, 4.15 and 3.71, respectively, with the optimization algorithm by considering the current scores in the utilities. The target scores for water supply, wastewater collection and treatment components are determined as 3.81, 4.05 and 3.84 for utility I; 4.03, 4.18 and 4.22 for utility II; and 3.51, 3.56 and 4.05 for utility III. The proposed model will be a reference for defining the most appropriate target and determining the management process.","PeriodicalId":509977,"journal":{"name":"Water Supply","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Developing a management and operation model for water and wastewater components using the equilibrium optimization algorithm\",\"authors\":\"Selami Kiliç, Abdullah Ates, M. Firat, S. Yilmaz\",\"doi\":\"10.2166/ws.2024.019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n A novel optimization model was developed using the equilibrium optimization algorithm to define the most appropriate management process according to the current state of urban water components in utilities. The basis of the optimization model is the current status analysis and management system, which consists of 11 main headings and 231 components. This model is applied for three utilities, and the results are presented in comparison with real-time data. Currently, the number of components with 0 or 1 score is 28, 19 and 69, respectively. The current average scores of the components in the utilities were obtained as 2.84, 3.43 and 2.48, respectively. Then, the improvement process of these components is optimized by the equilibrium optimization algorithm. The most appropriate targets were defined as 3.90, 4.15 and 3.71, respectively, with the optimization algorithm by considering the current scores in the utilities. The target scores for water supply, wastewater collection and treatment components are determined as 3.81, 4.05 and 3.84 for utility I; 4.03, 4.18 and 4.22 for utility II; and 3.51, 3.56 and 4.05 for utility III. The proposed model will be a reference for defining the most appropriate target and determining the management process.\",\"PeriodicalId\":509977,\"journal\":{\"name\":\"Water Supply\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Supply\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/ws.2024.019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Supply","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/ws.2024.019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Developing a management and operation model for water and wastewater components using the equilibrium optimization algorithm
A novel optimization model was developed using the equilibrium optimization algorithm to define the most appropriate management process according to the current state of urban water components in utilities. The basis of the optimization model is the current status analysis and management system, which consists of 11 main headings and 231 components. This model is applied for three utilities, and the results are presented in comparison with real-time data. Currently, the number of components with 0 or 1 score is 28, 19 and 69, respectively. The current average scores of the components in the utilities were obtained as 2.84, 3.43 and 2.48, respectively. Then, the improvement process of these components is optimized by the equilibrium optimization algorithm. The most appropriate targets were defined as 3.90, 4.15 and 3.71, respectively, with the optimization algorithm by considering the current scores in the utilities. The target scores for water supply, wastewater collection and treatment components are determined as 3.81, 4.05 and 3.84 for utility I; 4.03, 4.18 and 4.22 for utility II; and 3.51, 3.56 and 4.05 for utility III. The proposed model will be a reference for defining the most appropriate target and determining the management process.