{"title":"与印度西北部地下水灌溉系统下的传统水稻水坑插秧相比,评估不同水分胁迫水平下的零耕作直播情况","authors":"Satyendra Kumar, Bhaskar Narjary, Kalpana Paudyal, Rajender Kumar Yadav, Sushil Kumar Kamra","doi":"10.1002/ird.2930","DOIUrl":null,"url":null,"abstract":"<p>Irrigation of rice using groundwater is considered one of the main contributors to north-west India's declining water level. The present study hypothesizes that zero-till direct seeding of rice (ZTDSR) with the optimum irrigation schedule may reduce irrigation compared to puddled transplanted rice (PTR). Crop growth stage-dependent predefined soil matric potential (SMP), that is, −15, −30 and −45 kPa based irrigation schedules either during the entire growing period or their combinations during the vegetative phase in ZTDSR, were compared with PTR for two consecutive seasons. The results showed that irrigation in ZTDSR at lower SMP at any growth stage caused adverse effects on yield. Irrigation at −15 kPa during the entire crop season with straw mulch was found to be the best schedule for ZTDSR. ZTDSR with −15 kPa irrigation, however, saved 36.2 cm of water and recorded higher water productivity but produced 20% less grain yield over the prevailing PTR. A higher groundwater system loss (GWSL) was found in the PTR (29.2 cm) than in the best ZTDSR (23.6 cm) schedule, which indicates better groundwater management in the ZTDSR than in the PTR. Hence, the ZTDSR has the potential to save irrigation, achieve higher water productivity and manage the depletion of groundwater resources in rice–wheat dominant north-west India.</p>","PeriodicalId":14848,"journal":{"name":"Irrigation and Drainage","volume":"73 3","pages":"928-943"},"PeriodicalIF":1.6000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessing zero-till direct seeding at variable water stress levels compared to traditional puddled transplanting of rice under groundwater-fed irrigation systems in north-west India\",\"authors\":\"Satyendra Kumar, Bhaskar Narjary, Kalpana Paudyal, Rajender Kumar Yadav, Sushil Kumar Kamra\",\"doi\":\"10.1002/ird.2930\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Irrigation of rice using groundwater is considered one of the main contributors to north-west India's declining water level. The present study hypothesizes that zero-till direct seeding of rice (ZTDSR) with the optimum irrigation schedule may reduce irrigation compared to puddled transplanted rice (PTR). Crop growth stage-dependent predefined soil matric potential (SMP), that is, −15, −30 and −45 kPa based irrigation schedules either during the entire growing period or their combinations during the vegetative phase in ZTDSR, were compared with PTR for two consecutive seasons. The results showed that irrigation in ZTDSR at lower SMP at any growth stage caused adverse effects on yield. Irrigation at −15 kPa during the entire crop season with straw mulch was found to be the best schedule for ZTDSR. ZTDSR with −15 kPa irrigation, however, saved 36.2 cm of water and recorded higher water productivity but produced 20% less grain yield over the prevailing PTR. A higher groundwater system loss (GWSL) was found in the PTR (29.2 cm) than in the best ZTDSR (23.6 cm) schedule, which indicates better groundwater management in the ZTDSR than in the PTR. Hence, the ZTDSR has the potential to save irrigation, achieve higher water productivity and manage the depletion of groundwater resources in rice–wheat dominant north-west India.</p>\",\"PeriodicalId\":14848,\"journal\":{\"name\":\"Irrigation and Drainage\",\"volume\":\"73 3\",\"pages\":\"928-943\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Irrigation and Drainage\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ird.2930\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Irrigation and Drainage","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ird.2930","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
Assessing zero-till direct seeding at variable water stress levels compared to traditional puddled transplanting of rice under groundwater-fed irrigation systems in north-west India
Irrigation of rice using groundwater is considered one of the main contributors to north-west India's declining water level. The present study hypothesizes that zero-till direct seeding of rice (ZTDSR) with the optimum irrigation schedule may reduce irrigation compared to puddled transplanted rice (PTR). Crop growth stage-dependent predefined soil matric potential (SMP), that is, −15, −30 and −45 kPa based irrigation schedules either during the entire growing period or their combinations during the vegetative phase in ZTDSR, were compared with PTR for two consecutive seasons. The results showed that irrigation in ZTDSR at lower SMP at any growth stage caused adverse effects on yield. Irrigation at −15 kPa during the entire crop season with straw mulch was found to be the best schedule for ZTDSR. ZTDSR with −15 kPa irrigation, however, saved 36.2 cm of water and recorded higher water productivity but produced 20% less grain yield over the prevailing PTR. A higher groundwater system loss (GWSL) was found in the PTR (29.2 cm) than in the best ZTDSR (23.6 cm) schedule, which indicates better groundwater management in the ZTDSR than in the PTR. Hence, the ZTDSR has the potential to save irrigation, achieve higher water productivity and manage the depletion of groundwater resources in rice–wheat dominant north-west India.
期刊介绍:
Human intervention in the control of water for sustainable agricultural development involves the application of technology and management approaches to: (i) provide the appropriate quantities of water when it is needed by the crops, (ii) prevent salinisation and water-logging of the root zone, (iii) protect land from flooding, and (iv) maximise the beneficial use of water by appropriate allocation, conservation and reuse. All this has to be achieved within a framework of economic, social and environmental constraints. The Journal, therefore, covers a wide range of subjects, advancement in which, through high quality papers in the Journal, will make a significant contribution to the enormous task of satisfying the needs of the world’s ever-increasing population. The Journal also publishes book reviews.