卡普托分式弗雷德霍尔姆-伏特拉积分微分方程的拉盖尔配位法

Dilek Varol, Ayşegül Daşcıoğlu
{"title":"卡普托分式弗雷德霍尔姆-伏特拉积分微分方程的拉盖尔配位法","authors":"Dilek Varol, Ayşegül Daşcıoğlu","doi":"10.32323/ujma.1390222","DOIUrl":null,"url":null,"abstract":"This paper discusses the linear fractional Fredholm-Volterra integro-differential equations (IDEs) considered in the Caputo sense. For this purpose, Laguerre polynomials have been used to construct an approximation method to obtain the solutions of the linear fractional Fredholm-Volterra IDEs. By this approximation method, the IDE has been transformed into a linear algebraic equation system using appropriate collocation points. In addition, a novel and exact matrix expression for the Caputo fractional derivatives of Laguerre polynomials and an associated explicit matrix formulation has been established for the first time in the literature. Furthermore, a comparison between the results of the proposed method and those of methods in the literature has been provided by implementing the method in numerous examples.","PeriodicalId":498123,"journal":{"name":"Universal journal of mathematics and applications","volume":"272 1‐4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Laguerre collocation approach of Caputo Fractional Fredholm-Volterra Integro-Differential Equations\",\"authors\":\"Dilek Varol, Ayşegül Daşcıoğlu\",\"doi\":\"10.32323/ujma.1390222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses the linear fractional Fredholm-Volterra integro-differential equations (IDEs) considered in the Caputo sense. For this purpose, Laguerre polynomials have been used to construct an approximation method to obtain the solutions of the linear fractional Fredholm-Volterra IDEs. By this approximation method, the IDE has been transformed into a linear algebraic equation system using appropriate collocation points. In addition, a novel and exact matrix expression for the Caputo fractional derivatives of Laguerre polynomials and an associated explicit matrix formulation has been established for the first time in the literature. Furthermore, a comparison between the results of the proposed method and those of methods in the literature has been provided by implementing the method in numerous examples.\",\"PeriodicalId\":498123,\"journal\":{\"name\":\"Universal journal of mathematics and applications\",\"volume\":\"272 1‐4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Universal journal of mathematics and applications\",\"FirstCategoryId\":\"0\",\"ListUrlMain\":\"https://doi.org/10.32323/ujma.1390222\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Universal journal of mathematics and applications","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.32323/ujma.1390222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了从 Caputo 意义上考虑的线性分数 Fredholm-Volterra 微分方程 (IDE)。为此,本文使用 Laguerre 多项式构建了一种近似方法,以获得线性分数 Fredholm-Volterra IDE 的解。通过这种近似方法,利用适当的定位点将 IDE 转化为线性代数方程系统。此外,还首次在文献中为 Laguerre 多项式的 Caputo 分数导数建立了一个新颖而精确的矩阵表达式和相关的显式矩阵表述。此外,通过在大量实例中实施该方法,对所提出方法的结果与文献中方法的结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Laguerre collocation approach of Caputo Fractional Fredholm-Volterra Integro-Differential Equations
This paper discusses the linear fractional Fredholm-Volterra integro-differential equations (IDEs) considered in the Caputo sense. For this purpose, Laguerre polynomials have been used to construct an approximation method to obtain the solutions of the linear fractional Fredholm-Volterra IDEs. By this approximation method, the IDE has been transformed into a linear algebraic equation system using appropriate collocation points. In addition, a novel and exact matrix expression for the Caputo fractional derivatives of Laguerre polynomials and an associated explicit matrix formulation has been established for the first time in the literature. Furthermore, a comparison between the results of the proposed method and those of methods in the literature has been provided by implementing the method in numerous examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信