{"title":"基于大数据分析和聚类算法的客户细分营销策略","authors":"Xiaotong Li, Young Sook Lee","doi":"10.4018/jcit.336916","DOIUrl":null,"url":null,"abstract":"Traditional customer segmentation methods cannot obtain more effective information from massive customer data, which affects the formulation of marketing strategies. Based on this, this study constructs a customer segmentation marketing strategy model that integrates support vector machines and clustering algorithms. This model first utilizes support vector machines to segment existing customer data, and then integrates support vector machines and clustering algorithms to construct a customer segmentation model. Finally, simulation experiments are conducted using the dataset. The results show that the model algorithm obtains the optimal solution when the quantity of iterations is 50. Meanwhile, the average error rate of the model algorithm in the customer segmentation process is 6.82%, the average recall rate is 91.28%, and the average profit predicted by the impact strategy developed by the segmentation model is 29.88%, which is 2.53% different from the true value.","PeriodicalId":43384,"journal":{"name":"Journal of Cases on Information Technology","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Customer Segmentation Marketing Strategy Based on Big Data Analysis and Clustering Algorithm\",\"authors\":\"Xiaotong Li, Young Sook Lee\",\"doi\":\"10.4018/jcit.336916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional customer segmentation methods cannot obtain more effective information from massive customer data, which affects the formulation of marketing strategies. Based on this, this study constructs a customer segmentation marketing strategy model that integrates support vector machines and clustering algorithms. This model first utilizes support vector machines to segment existing customer data, and then integrates support vector machines and clustering algorithms to construct a customer segmentation model. Finally, simulation experiments are conducted using the dataset. The results show that the model algorithm obtains the optimal solution when the quantity of iterations is 50. Meanwhile, the average error rate of the model algorithm in the customer segmentation process is 6.82%, the average recall rate is 91.28%, and the average profit predicted by the impact strategy developed by the segmentation model is 29.88%, which is 2.53% different from the true value.\",\"PeriodicalId\":43384,\"journal\":{\"name\":\"Journal of Cases on Information Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cases on Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/jcit.336916\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cases on Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/jcit.336916","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Customer Segmentation Marketing Strategy Based on Big Data Analysis and Clustering Algorithm
Traditional customer segmentation methods cannot obtain more effective information from massive customer data, which affects the formulation of marketing strategies. Based on this, this study constructs a customer segmentation marketing strategy model that integrates support vector machines and clustering algorithms. This model first utilizes support vector machines to segment existing customer data, and then integrates support vector machines and clustering algorithms to construct a customer segmentation model. Finally, simulation experiments are conducted using the dataset. The results show that the model algorithm obtains the optimal solution when the quantity of iterations is 50. Meanwhile, the average error rate of the model algorithm in the customer segmentation process is 6.82%, the average recall rate is 91.28%, and the average profit predicted by the impact strategy developed by the segmentation model is 29.88%, which is 2.53% different from the true value.
期刊介绍:
JCIT documents comprehensive, real-life cases based on individual, organizational and societal experiences related to the utilization and management of information technology. Cases published in JCIT deal with a wide variety of organizations such as businesses, government organizations, educational institutions, libraries, non-profit organizations. Additionally, cases published in JCIT report not only successful utilization of IT applications, but also failures and mismanagement of IT resources and applications.