用元素粉末混合物制造的 Ti6Al4V 钛合金的微结构演变和腐蚀行为特征

Serhii Lavrys, Iryna Pohrelyuk, D. Savvakin, Khrystyna Shliakhetka, M. Danyliak
{"title":"用元素粉末混合物制造的 Ti6Al4V 钛合金的微结构演变和腐蚀行为特征","authors":"Serhii Lavrys, Iryna Pohrelyuk, D. Savvakin, Khrystyna Shliakhetka, M. Danyliak","doi":"10.4028/p-gvgzk5","DOIUrl":null,"url":null,"abstract":"Sintered Ti6Al4V titanium alloys prepared from TiH2/60Al40V powder blends under various technological conditions were studied. The microstructural evolution was investigated by X-ray diffraction, scanning electron microscopy, optical microscopy, and energy dispersive X-ray analysis. The corrosion resistance of sintered titanium alloy was evaluated by the static immersion test in 40 wt.% H2SO4 acid, according to ASTM standard G31-72(2004). Depending on powder metallurgy processing parameters (compaction pressure or sintering temperature), the Ti6Al4V alloy was obtained with various structural features (porosity and structural heterogeneity). It was shown that those structural features of sintered Ti6Al4V titanium alloy are a key microstructural factor that determines their corrosion resistance. For instance, an increase in porosity leads to enhanced corrosion resistance. Based on the current research, the optimal manufacturing regimes of powder metallurgy of Ti6Al4V titanium alloy ensure the achievement of characteristics sufficient for practical use in aggressive conditions of the chemical industry were obtained.","PeriodicalId":507685,"journal":{"name":"Key Engineering Materials","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Features of Microstructural Evolution and Corrosion Behavior of Ti6Al4V Titanium Alloy Fabricated from Elemental Powder Blends\",\"authors\":\"Serhii Lavrys, Iryna Pohrelyuk, D. Savvakin, Khrystyna Shliakhetka, M. Danyliak\",\"doi\":\"10.4028/p-gvgzk5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sintered Ti6Al4V titanium alloys prepared from TiH2/60Al40V powder blends under various technological conditions were studied. The microstructural evolution was investigated by X-ray diffraction, scanning electron microscopy, optical microscopy, and energy dispersive X-ray analysis. The corrosion resistance of sintered titanium alloy was evaluated by the static immersion test in 40 wt.% H2SO4 acid, according to ASTM standard G31-72(2004). Depending on powder metallurgy processing parameters (compaction pressure or sintering temperature), the Ti6Al4V alloy was obtained with various structural features (porosity and structural heterogeneity). It was shown that those structural features of sintered Ti6Al4V titanium alloy are a key microstructural factor that determines their corrosion resistance. For instance, an increase in porosity leads to enhanced corrosion resistance. Based on the current research, the optimal manufacturing regimes of powder metallurgy of Ti6Al4V titanium alloy ensure the achievement of characteristics sufficient for practical use in aggressive conditions of the chemical industry were obtained.\",\"PeriodicalId\":507685,\"journal\":{\"name\":\"Key Engineering Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Key Engineering Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/p-gvgzk5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Key Engineering Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-gvgzk5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了由 TiH2/60Al40V 粉末混合物在不同工艺条件下制备的烧结 Ti6Al4V 钛合金。通过 X 射线衍射、扫描电子显微镜、光学显微镜和能量色散 X 射线分析研究了微观结构的演变。根据 ASTM 标准 G31-72(2004),通过在 40 wt.% H2SO4 酸中的静态浸泡试验评估了烧结钛合金的耐腐蚀性。根据不同的粉末冶金加工参数(压实压力或烧结温度),得到的 Ti6Al4V 合金具有不同的结构特征(孔隙率和结构异质性)。研究表明,烧结 Ti6Al4V 钛合金的这些结构特征是决定其耐腐蚀性的关键微结构因素。例如,孔隙率的增加会导致耐腐蚀性的增强。在当前研究的基础上,获得了 Ti6Al4V 钛合金粉末冶金的最佳制造机制,以确保获得足以在化学工业侵蚀性条件下实际使用的特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Features of Microstructural Evolution and Corrosion Behavior of Ti6Al4V Titanium Alloy Fabricated from Elemental Powder Blends
Sintered Ti6Al4V titanium alloys prepared from TiH2/60Al40V powder blends under various technological conditions were studied. The microstructural evolution was investigated by X-ray diffraction, scanning electron microscopy, optical microscopy, and energy dispersive X-ray analysis. The corrosion resistance of sintered titanium alloy was evaluated by the static immersion test in 40 wt.% H2SO4 acid, according to ASTM standard G31-72(2004). Depending on powder metallurgy processing parameters (compaction pressure or sintering temperature), the Ti6Al4V alloy was obtained with various structural features (porosity and structural heterogeneity). It was shown that those structural features of sintered Ti6Al4V titanium alloy are a key microstructural factor that determines their corrosion resistance. For instance, an increase in porosity leads to enhanced corrosion resistance. Based on the current research, the optimal manufacturing regimes of powder metallurgy of Ti6Al4V titanium alloy ensure the achievement of characteristics sufficient for practical use in aggressive conditions of the chemical industry were obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信