有记忆的非自主悬索桥方程的均匀吸引子

Pub Date : 2024-02-10 DOI:10.58997/ejde.2024.16
Lulu Wang, Qiaozhen Ma
{"title":"有记忆的非自主悬索桥方程的均匀吸引子","authors":"Lulu Wang, Qiaozhen Ma","doi":"10.58997/ejde.2024.16","DOIUrl":null,"url":null,"abstract":"In this article, we investigate the long-time dynamical behavior of non-autonomous suspension bridge equations with memory and free boundary conditions. We first establish the well-posedness of the system by means of the maximal monotone operator theory. Secondly, the existence of uniformly bounded absorbing set is obtained. Finally, asymptotic compactness of the process is verified, and then the existence of uniform attractors is proved for non-autonomous suspension bridge equations with memory term.\nFor more information see https://ejde.math.txstate.edu/Volumes/2024/16/abstr.html","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uniform attractors of non-autonomous suspension bridge equations with memory\",\"authors\":\"Lulu Wang, Qiaozhen Ma\",\"doi\":\"10.58997/ejde.2024.16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we investigate the long-time dynamical behavior of non-autonomous suspension bridge equations with memory and free boundary conditions. We first establish the well-posedness of the system by means of the maximal monotone operator theory. Secondly, the existence of uniformly bounded absorbing set is obtained. Finally, asymptotic compactness of the process is verified, and then the existence of uniform attractors is proved for non-autonomous suspension bridge equations with memory term.\\nFor more information see https://ejde.math.txstate.edu/Volumes/2024/16/abstr.html\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.58997/ejde.2024.16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.58997/ejde.2024.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了具有记忆和自由边界条件的非自治悬索桥方程的长期动力学行为。我们首先通过最大单调算子理论建立了系统的好求性。其次,得到了均匀有界吸收集的存在性。最后,验证了过程的渐近紧凑性,并证明了带记忆项的非自治悬索桥方程的均匀吸引子的存在性。更多信息,请参见 https://ejde.math.txstate.edu/Volumes/2024/16/abstr.html。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Uniform attractors of non-autonomous suspension bridge equations with memory
In this article, we investigate the long-time dynamical behavior of non-autonomous suspension bridge equations with memory and free boundary conditions. We first establish the well-posedness of the system by means of the maximal monotone operator theory. Secondly, the existence of uniformly bounded absorbing set is obtained. Finally, asymptotic compactness of the process is verified, and then the existence of uniform attractors is proved for non-autonomous suspension bridge equations with memory term. For more information see https://ejde.math.txstate.edu/Volumes/2024/16/abstr.html
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信