Miguel Bravo-Haro, P. Heresi, H. Dávalos, Eduardo Miranda
{"title":"2023 年 2 月 6 日土耳其 Kahramanmaraş 双重地震期间 FIV3 地动强度的方向性","authors":"Miguel Bravo-Haro, P. Heresi, H. Dávalos, Eduardo Miranda","doi":"10.1177/87552930231226075","DOIUrl":null,"url":null,"abstract":"At present time, ground-motion prediction models neglect the directionality observed in horizontal components of earthquake ground motions, that is, the important changes in ground-motion intensity that occur with changes in azimuth. This study presents an investigation of the directionality of a recently proposed measure of ground-motion intensity during the 6 February 2023, Mw 7.8 Pazarcık and Mw 7.5 Elbistan earthquake doublet in the Kahramanmaraş region of Türkiye, which resulted in the collapse of more than 35,000 buildings and caused almost 60,000 fatalities. The studied intensity measure is referred to as FIV3, which has been shown to be better correlated with structural collapse than the spectral acceleration at the fundamental period of the structure. The improved intensity measure is period-dependent and is computed as the sum of the three largest incremental velocities with the same polarity obtained from the area under segments of a low-pass filtered ground acceleration time series. The following aspects are studied in this article: variation of FIV3 intensity with changes in the orientation; variation of FIV3 intensity with changes in the period of vibration; attenuation of FIV3 intensities with increasing distance; and spatial distribution of the orientation of maximum FIV3 intensity. This study is based on 231 pairs of records from the Mw 7.8 main event and 222 pairs of records from the Mw 7.5 event. Similarly to the directionality of spectral ordinates, it is found that the directionality of FIV3 intensity also increases with increasing period. Strong directionality occurred not only in the near field but up to distances as large as 400 km from the epicenter. The orientation of maximum FIV3 intensity is found to occur close to the transverse orientation, consistent with observations for the orientation of maximum spectral ordinates during strike-slip earthquakes.","PeriodicalId":505879,"journal":{"name":"Earthquake Spectra","volume":"114 17","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Directionality of FIV3 ground-motion intensities during the 6 February 2023 Kahramanmaraş, Türkiye earthquake doublet\",\"authors\":\"Miguel Bravo-Haro, P. Heresi, H. Dávalos, Eduardo Miranda\",\"doi\":\"10.1177/87552930231226075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"At present time, ground-motion prediction models neglect the directionality observed in horizontal components of earthquake ground motions, that is, the important changes in ground-motion intensity that occur with changes in azimuth. This study presents an investigation of the directionality of a recently proposed measure of ground-motion intensity during the 6 February 2023, Mw 7.8 Pazarcık and Mw 7.5 Elbistan earthquake doublet in the Kahramanmaraş region of Türkiye, which resulted in the collapse of more than 35,000 buildings and caused almost 60,000 fatalities. The studied intensity measure is referred to as FIV3, which has been shown to be better correlated with structural collapse than the spectral acceleration at the fundamental period of the structure. The improved intensity measure is period-dependent and is computed as the sum of the three largest incremental velocities with the same polarity obtained from the area under segments of a low-pass filtered ground acceleration time series. The following aspects are studied in this article: variation of FIV3 intensity with changes in the orientation; variation of FIV3 intensity with changes in the period of vibration; attenuation of FIV3 intensities with increasing distance; and spatial distribution of the orientation of maximum FIV3 intensity. This study is based on 231 pairs of records from the Mw 7.8 main event and 222 pairs of records from the Mw 7.5 event. Similarly to the directionality of spectral ordinates, it is found that the directionality of FIV3 intensity also increases with increasing period. Strong directionality occurred not only in the near field but up to distances as large as 400 km from the epicenter. The orientation of maximum FIV3 intensity is found to occur close to the transverse orientation, consistent with observations for the orientation of maximum spectral ordinates during strike-slip earthquakes.\",\"PeriodicalId\":505879,\"journal\":{\"name\":\"Earthquake Spectra\",\"volume\":\"114 17\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earthquake Spectra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/87552930231226075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquake Spectra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/87552930231226075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Directionality of FIV3 ground-motion intensities during the 6 February 2023 Kahramanmaraş, Türkiye earthquake doublet
At present time, ground-motion prediction models neglect the directionality observed in horizontal components of earthquake ground motions, that is, the important changes in ground-motion intensity that occur with changes in azimuth. This study presents an investigation of the directionality of a recently proposed measure of ground-motion intensity during the 6 February 2023, Mw 7.8 Pazarcık and Mw 7.5 Elbistan earthquake doublet in the Kahramanmaraş region of Türkiye, which resulted in the collapse of more than 35,000 buildings and caused almost 60,000 fatalities. The studied intensity measure is referred to as FIV3, which has been shown to be better correlated with structural collapse than the spectral acceleration at the fundamental period of the structure. The improved intensity measure is period-dependent and is computed as the sum of the three largest incremental velocities with the same polarity obtained from the area under segments of a low-pass filtered ground acceleration time series. The following aspects are studied in this article: variation of FIV3 intensity with changes in the orientation; variation of FIV3 intensity with changes in the period of vibration; attenuation of FIV3 intensities with increasing distance; and spatial distribution of the orientation of maximum FIV3 intensity. This study is based on 231 pairs of records from the Mw 7.8 main event and 222 pairs of records from the Mw 7.5 event. Similarly to the directionality of spectral ordinates, it is found that the directionality of FIV3 intensity also increases with increasing period. Strong directionality occurred not only in the near field but up to distances as large as 400 km from the epicenter. The orientation of maximum FIV3 intensity is found to occur close to the transverse orientation, consistent with observations for the orientation of maximum spectral ordinates during strike-slip earthquakes.