加权、循环和半代数证明

IF 4.5 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Ilario Bonacina, Maria Luisa Bonet, Jordi Levy
{"title":"加权、循环和半代数证明","authors":"Ilario Bonacina, Maria Luisa Bonet, Jordi Levy","doi":"10.1613/jair.1.15075","DOIUrl":null,"url":null,"abstract":"In recent years there has been an increasing interest in studying proof systems stronger than Resolution, with the aim of building more efficient SAT solvers based on them. In defining these proof systems, we try to find a balance between the power of the proof system (the size of the proofs required to refute a formula) and the difficulty of finding the proofs.\nIn this paper we consider the proof systems circular Resolution, Sherali-Adams, Nullstellensatz and Weighted Resolution and we study their relative power from a theoretical perspective. We prove that circular Resolution, Sherali-Adams and Weighted Resolution are polynomially equivalent proof systems. We also prove that Nullstellensatz is polynomially equivalent to a restricted version of Weighted Resolution. The equivalences carry on also for versions of the systems where the coefficients/weights are expressed in unary.\nThe practical interest in these systems comes from the fact that they admit efficient algorithms to find proofs in case these have small width/degree.","PeriodicalId":54877,"journal":{"name":"Journal of Artificial Intelligence Research","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weighted, Circular and Semi-Algebraic Proofs\",\"authors\":\"Ilario Bonacina, Maria Luisa Bonet, Jordi Levy\",\"doi\":\"10.1613/jair.1.15075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years there has been an increasing interest in studying proof systems stronger than Resolution, with the aim of building more efficient SAT solvers based on them. In defining these proof systems, we try to find a balance between the power of the proof system (the size of the proofs required to refute a formula) and the difficulty of finding the proofs.\\nIn this paper we consider the proof systems circular Resolution, Sherali-Adams, Nullstellensatz and Weighted Resolution and we study their relative power from a theoretical perspective. We prove that circular Resolution, Sherali-Adams and Weighted Resolution are polynomially equivalent proof systems. We also prove that Nullstellensatz is polynomially equivalent to a restricted version of Weighted Resolution. The equivalences carry on also for versions of the systems where the coefficients/weights are expressed in unary.\\nThe practical interest in these systems comes from the fact that they admit efficient algorithms to find proofs in case these have small width/degree.\",\"PeriodicalId\":54877,\"journal\":{\"name\":\"Journal of Artificial Intelligence Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Artificial Intelligence Research\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1613/jair.1.15075\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1613/jair.1.15075","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

近年来,人们对研究强于解析(Resolution)的证明系统越来越感兴趣,目的是在此基础上建立更高效的 SAT 解算器。在定义这些证明系统时,我们试图在证明系统的能力(反驳公式所需的证明的大小)和寻找证明的难度之间找到平衡。在本文中,我们考虑了循环解析、Sherali-Adams、Nullstellensatz 和加权解析等证明系统,并从理论角度研究了它们的相对能力。我们证明循环解析、Sherali-Adams 和加权解析是多项式等价的证明系统。我们还证明了 Nullstellensatz 多项式等价于加权解析的限制版本。这些等价性也适用于系数/权重以一元形式表示的系统版本。这些系统的实际意义在于,在这些系统的宽度/阶数较小的情况下,它们可以采用高效算法找到证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weighted, Circular and Semi-Algebraic Proofs
In recent years there has been an increasing interest in studying proof systems stronger than Resolution, with the aim of building more efficient SAT solvers based on them. In defining these proof systems, we try to find a balance between the power of the proof system (the size of the proofs required to refute a formula) and the difficulty of finding the proofs. In this paper we consider the proof systems circular Resolution, Sherali-Adams, Nullstellensatz and Weighted Resolution and we study their relative power from a theoretical perspective. We prove that circular Resolution, Sherali-Adams and Weighted Resolution are polynomially equivalent proof systems. We also prove that Nullstellensatz is polynomially equivalent to a restricted version of Weighted Resolution. The equivalences carry on also for versions of the systems where the coefficients/weights are expressed in unary. The practical interest in these systems comes from the fact that they admit efficient algorithms to find proofs in case these have small width/degree.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Artificial Intelligence Research
Journal of Artificial Intelligence Research 工程技术-计算机:人工智能
CiteScore
9.60
自引率
4.00%
发文量
98
审稿时长
4 months
期刊介绍: JAIR(ISSN 1076 - 9757) covers all areas of artificial intelligence (AI), publishing refereed research articles, survey articles, and technical notes. Established in 1993 as one of the first electronic scientific journals, JAIR is indexed by INSPEC, Science Citation Index, and MathSciNet. JAIR reviews papers within approximately three months of submission and publishes accepted articles on the internet immediately upon receiving the final versions. JAIR articles are published for free distribution on the internet by the AI Access Foundation, and for purchase in bound volumes by AAAI Press.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信